不同类型锂电池性能不同在哪里,汇总常见六种锂电池特性及参数
【能源人都在看,点击右上角加'关注'】
我们常常会说到三元锂电池或者铁锂电池,这些都是按照正极活性材料来给锂电池命名的。本文汇总六种常见锂电池类型以及它们的主要性能参数。大家都知道,相同技术路线的电芯,其具体参数并不完全相同,本文所显示的是当前参数的一般水平。六种锂电池具体包括:钴酸锂(LiCoO2),锰酸锂(LiMn2O4),镍钴锰酸锂(LiNiMnCoO2或NMC),镍钴铝酸锂(LiNiCoAlO2或称NCA),磷酸铁锂(LiFePO4),钛酸锂(Li4Ti5O12)。
钴酸锂(LiCoO 2)
其高比能量使钴酸锂成为手机,笔记本电脑和数码相机的热门选择。电池由氧化钴阴极和石墨碳阳极组成。阴极具有分层结构,在放电期间,锂离子从阳极移动到阴极,充电过程则流动方向相反。 结构形式如图1所示。
图1: 钴酸锂结构
阴极具有分层结构。在放电期间,锂离子从阳极移动到阴极; 充电时流量从阴极流向阳极。
钴酸锂的缺点是寿命相对较短,热稳定性低和负载能力有限(比功率)。像其他钴混合锂离子电池一样,钴酸锂采用石墨阳极,其循环寿命主要受到固体电解质界面(SEI)的限制,主要表现在SEI膜的逐渐增厚,和快速充电或者低温充电过程的阳极镀锂问题。较新的材料体系增加了镍,锰和/或铝以提高寿命,负载能力和降低成本。
钴酸锂不应以高于容量的电流进行充电和放电。这意味着具有2,400mAh的18650电池只能以小于等于2,400mA充电和放电。强制快速充电或施加高于2400mA的负载会导致过热和超负荷的应力。为获得最佳快速充电,制造商建议充电倍率为0.8C或约2,000mA。电池保护电路将能量单元的充电和放电速率限制在约1C的安全水平。
六角蜘蛛图(图2)总结了与运行相关的具体能量或容量方面的钴酸锂性能;具体功率或提供大电流的能力; 安全; 在高低温环境下的性能表现; 寿命包括日历寿命和循环寿命; 成本特性。蜘蛛图中没有显示的其他重要特征还包括毒性,快速充电能力,自放电和保质期。
由于钴的高成本以及通过与其他活性阴极材料混合材料带来的明显性能改善,钴酸锂正在逐步被锰酸锂替代,尤其是NMC和NCA。(请参阅下面对NMC和NCA的描述。)
图2: 平均钴酸锂电池的蜘蛛图。
钴酸锂在高比能量方面表现出色,但在功率特性、安全性和循环寿命方面只能提供一般的性能表现
汇总表
钴酸锂氧化物: LiCoO 2阴极(约60%Co),石墨阳极 短型:LCO或Li-钴。始于1991年以来
电压
标称值为3.60V; 典型工作范围3.0-4.2V /电池
比能(容量)
150-200Wh /公斤。特种电池提供高达240Wh / kg。
充电(C率)
0.7-1C,充电至4.20V(大部分电池);典型充电时长 3小时;1C以上的充电电流会缩短电池寿命。
放电(C率)
1C;放电截止电压2.50V。1C以上的放电电流会缩短电池寿命。
循环寿命
500-1000,与放电深度,负荷,温度有关
热失控
150°C(302°F)。满充状态容易带来热失控
应用
手机,平板电脑,笔记本电脑,相机
注释
非常高的比能量,有限的比功率。钴很昂贵。被用作能量型电池。市场份额稳定。
表3:钴酸锂的特性
锰酸锂(LiMn2O4)
尖晶石锰酸锂电池首次发表于1983年的材料研究报告中。1996年,Moli能源公司将锰酸锂为阴极材料的锂离子电池商业化。该架构形成三维尖晶石结构,可改善电极上的离子流动,从而降低内部电阻并改善电流承载能力。尖晶石的另一个优点是热稳定性高,安全性提高,但循环和日历寿命有限。
低电池内阻可实现快速充电和大电流放电。18650型电芯,锰酸锂电池可以在20-30A的电流下放电,并具有适度的热量积累。也可以施加高达50A1秒负载脉冲。在此电流下持续的高负荷会导致热量积聚,电池温度不能超过80°C(176°F)。锰酸锂用于电动工具,医疗器械,以及混合动力和纯电动汽车。
图4说明在锰酸锂电池的阴极上形成三维晶体骨架。该尖晶石结构通常由连接成晶格的菱形形状组成,一般在电池化成后出现。
图4:锰酸锂结构。
锰酸锂阴极结晶形成具有在化成后成型的三维骨架结构。尖晶石提供低电阻,但比能量低于钴酸锂。
锰酸锂的容量大约比钴酸锂低三分之一。设计灵活性使工程师能够选择最大限度地延长电池的使用寿命,或者提高最大负载电流(比功率)或容量(比能)。例如,18650电池的长寿命版本只有1,100mAh的适中容量; 高容量版本则达到1,500mAh。
图5显示了典型锰酸锂电池的蜘蛛图。这些特性参数似乎不太理想,但新设计在功率,安全性和寿命方面有所改进。纯锰酸锂电池今天不再普遍; 它们只在特殊情况下应用。
图5:纯锰酸锂电池的蜘蛛图。尽管整体性能一般,但新型锰酸锂设计可以提高功率,安全性和寿命。
大多数锰酸锂与锂镍锰钴氧化物(NMC)混合,以提高比能量并延长寿命。这种组合带来了每个系统的最佳性能,而大多数电动汽车,如日产Leaf,雪佛兰Volt和宝马i3都选用了LMO(NMC)。电池的LMO部分可以达到30%左右,可以在加速时提供较高的电流; NMC部分提供了很长的续航里程。
锂离子电池研究倾向于将锰酸锂与钴,镍,锰和/或铝组合作为活性阴极材料。在一些架构中,少量硅被添加到阳极。这提供了25%的容量提升; 然而,硅随着充放电膨胀和收缩,从而引起机械应力,容量提升通常与短的循环寿命紧密联系。
可以方便地选择这三种活性金属以及硅增强来提高比能(容量),比功率(负载能力)或寿命。消费电池需要大容量,而工业应用需要电池系统,具有良好的负载能力,寿命长,并提供安全可靠的服务。
汇总表
锰酸锂氧化物: LiMn2O4阴极,石墨阳极 ; 简称:LMO或Li-Mn(尖晶石结构)始于1996年以来
电压
3.70V(3.80V)标称值; 典型工作范围3.0-4.2V /每只电池
比能(容量)
100-150Wh / kg的
充电(C率)
典型值为0.7-1C,最大值为3C,充电至4.20V(大部分电池)
放电(C率)
1C; 一些电池可以达到10C,30C脉冲(5s),2.50V截止
循环寿命
300-700(与放电深度,温度有关)
热失控
典型值为250°C(482°F)。高电荷促进热失控
应用
电动工具,医疗设备,电动动力传动系统
注释
功率大但容量少; 比钴酸锂更安全; 通常与NMC混合以提高性能。
表6:锰酸锂氧化物的特性
镍钴锰酸锂(LiNiMnCoO 2或NMC)
最成功的锂离子体系之一是镍锰钴(NMC)的阴极组合。与锰酸锂类似,这个体系可以定制用作能量电池或功率电池。例如,中等负载条件下的18650电池中的NMC具有约2,800mAh的容量并且可以提供4A至5A放电电流; 同一类型的NMC在针对特定功率进行优化时,容量仅为2,000mAh,但可提供20A的连续放电电流。硅基阳极将达到4000mAh以上,但负载能力降低,循环寿命缩短。添加到石墨中的硅具有缺陷,即阳极随着充电和放电而膨胀和收缩,使得电池机械应力大结构不稳定。
NMC的秘密在于镍和锰的结合。与此类似的是食盐,其中主要成分钠和氯化物本身是有毒的,但将它们混合起来作为调味盐和食品保存剂。镍以其高比能量而闻名,但稳定性差;锰尖晶石结构可以实现低内阻但比能量低。两种活性金属优势互补。
NMC是电动工具,电动自行车和其他电动动力系统的首选电池。阴极组合通常是三分之一镍,三分之一锰和三分之一钴,也被称为1-1-1。这提供了一种独特的混合物,由于钴含量降低,也降低了原材料成本。另一个成功的组合是NCM,其中含有5份镍,3份钴和2份锰(5-3-2)。也可以使用其他不同量的阴极材料组合。
由于钴的高成本,电池制造商从钴系转向镍阴极。镍基系统比钴基电池具有更高的能量密度,更低的成本和更长的循环寿命,但是它们的电压略低。
新型电解质和添加剂可以使单只电池充电至4.4V以上,从而提高电量。图7展示了NMC的特性。
图7:NMC的蜘蛛图。NMC具有良好的整体性能,并且在比能量方面表现出色。这种电池是电动车的首选,具有最低的自热率。
由于该体系经济性和综合性能表现均比较好,因此NMC混合锂离子电池越来越受到重视。镍,锰和钴三种活性材料可轻松混合,以适应需要频繁循环的汽车和能源存储系统(EES)的广泛应用。NMC家族的多样性正在增长。
汇总表
锂镍锰钴氧化物: LiNiMnCoO2阴极,石墨阳极简称:NMC(NCM,CMN,CNM,MNC,MCN类似于不同金属组合)始于2008年
电压
3.60V,标称3.70V; 电池典型工作范围3.0-4.2V或更高
比能(容量)
150-220Wh/kg
充电(C率)
0.7-1C,充电至4.20V,一些至4.30V; 3小时典型充电。1C以上的充电电流会缩短电池寿命。
放电(C率)
1C; 2C可能在某些电芯上可行;2.50V截止
循环寿命
1000-2000(与放电深度,温度有关)
热失控
典型的210°C(410°F)。高电荷促进热失控
应用
电动自行车,医疗设备,电动车,工业
注释
提供高容量和高功率。混合电芯。受到多种用途的欢迎,市场份额不断增加。
表8: 锂镍锰钴氧化物(NMC)的特性。
磷酸铁锂(LiFePO 4)
1996年,德克萨斯大学发现磷酸盐可作为再充电锂电池的阴极材料。磷酸锂具有良好的电化学性能和低电阻。这是通过纳米级磷酸盐阴极材料实现的。主要优点是高额定电流和长循环寿命;良好的热稳定性,增强了安全性和对滥用的容忍度。
如果长时间保持在高电压下,磷酸锂对全部充电条件的耐受性更强,并且比其他锂离子系统的应力更小。缺点是,较低的3.2V电池标称电压使得比能量低于钴掺杂锂离子电池。对于大多数电池来说,低温会降低性能,升高储存温度会缩短使用寿命,磷酸锂也不例外。磷酸锂具有比其他锂离子电池更高的自放电,这可能会引起老化进而带来均衡问题,虽然可以通过选用高质量的电池或使用先进的电池管理系统来弥补,但这两种方式都增加了电池组的成本。电池寿命对制造过程中的杂质非常敏感,不能承受水分的掺杂,由于水分杂质的存在有些电池最短寿命只有50个循环。图9总结了磷酸锂的属性。
常用磷酸锂代替铅酸起动蓄电池。四个串联电池产生12.80V,与六个2V铅酸电池串联的电压相似。车辆将铅酸充电至14.40V(2.40V/电池)并保持浮充状态。浮充的用意在于保持完全充电水平并防止铅酸电池硫酸化。
通过串联四个磷酸锂电池,每个电池的电压均为3.60V,这是正确的满充电电压。此时,应该断开充电,但驾驶时继续充电。磷酸锂容忍一些过度充电; 然而,由于大多数车辆在长途旅行中长时间保持电压在14.40V,可能会增加磷酸锂电池的机械应力。时间会告诉我们磷酸锂作为铅酸电池的替代品能够承受多长时间的过充电。低温也会降低锂离子的性能,可能会影响极端情况下的起动能力。
图9:典型磷酸锂电池的蜘蛛图。
磷酸锂具有良好的安全性和长寿命,比能量适中,自放电能力增强。
由Cadex提供
汇总表
磷酸铁锂: LiFePO4阴极,石墨阳极 简称:LFP或磷酸锂,始于1996年
电压
3.20,标称值3.30V; 典型工作范围2.5-3.65V
比能(容量)
90-120Wh/kg
充电(C率)
1C典型,充电至3.65V;典型的3小时充电时间
放电(C率)
1C,25C在一些电芯上可行; 40A脉冲(2s); 2.50V截止(低于2V导致损坏)
循环寿命
1000-2000(与放电深度,温度有关)
热失控
270°C(518°F)即使充满电,电池也非常安全
应用
便携式和固定式,需要高负载电流和耐久性的应用场景
注释
非常平坦的电压放电曲线但容量低。最安全的锂离子之一。用于特殊市场。高自放电。
表10:磷酸铁锂的特性
镍钴铝酸锂(LiNiCoAlO2或称NCA)
镍钴铝酸锂电池或NCA自1999年以后被应用。它具有较高的比能量,相当好的比功率和长的使用寿命与NMC有相似之处。不太讨人喜欢的是安全性和成本。图11总结了六个关键特征。NCA是锂镍氧化物的进一步发展;加入铝赋予电池更好的化学稳定性。
图11:NCA的蜘蛛图。高能量和功率密度以及良好的使用寿命使NCA成为EV动力系统的候选者。高成本和边际安全性却有负面的影响。
汇总表
镍钴铝酸锂: LiNiCoAlO2阴极(〜9 %Co),石墨阳极 简称:NCA或锂铝。始于1999年
电压
标称值为3.60V;典型工作范围3.0-4.2V
比能(容量)
200-260Wh/公斤; 预测可以达到300Wh/kg
充电(C率)
0.7C,充电至4.20V(大多数电池),典型的3小时充电,一些电池可以快速充电
放电(C率)
1C典型;截止3.00V;高放电速率会缩短电池寿命
循环寿命
500(与放电深度,温度有关)
热失控
典型值为150°C(302°F),高电荷会导致热失控
应用
医疗设备,工业,电动动力总成(特斯拉)
注释
与钴酸锂有相似之处。能量型电池。
表12:镍钴铝酸锂的特性
钛酸锂(Li4Ti5O12)
自二十世纪八十年代以来,钛酸锂阳极的电池已为人所知。钛酸锂代替典型锂离子电池阳极中的石墨,并且材料形成尖晶石结构。阴极可以是锰酸锂或NMC。钛酸锂的标称电池电压为2.40V,可以快速充电,并提供10C的高放电电流。据说循环次数高于常规锂离子电池的循环次数。钛酸锂是安全的,具有出色的低温放电特性,在-30°C(-22°F)时可获得80%的容量。
LTO(通常是Li4Ti5 O12)零应变,没有SEI膜形成和在快速充电和低温充电时无锂电镀现象,因而具有优于传统的钴掺混的Li-离子与石墨阳极的充放电性能。高温下的热稳定性也比其他锂离子体系好; 然而,电池价格昂贵。比能量低,只有65Wh/kg,与NiCd相当。钛酸锂充电至2.80V,放电结束时为1.80V。图13显示了钛酸锂电池的特性。典型用途是电动动力传动系统,UPS和太阳能路灯。
图13:钛酸锂蜘蛛图。钛酸锂在安全性,低温性能和寿命方面表现出色。正在努力提高比能量和降低成本。
汇总表
钛酸锂:可以是锰酸锂氧化物或NMC;Li4Ti 5O12(钛酸盐)阳极简称:LTO或Li-钛酸盐,2008年左右开始销售。
电压
2.40V标称值; 典型工作范围1.8-2.85V;
比能(容量)
50-80Wh/kg
充电(C率)
1C典型; 最大5C,充电至2.85V
放电(C率)
10C可能,30C 5s脉冲; LCO/LTO截止电压1.80V
循环寿命
3,000-7,000
热失控
一种最安全的锂离子电池
应用
UPS,电动动力总成(三菱i-MiEV,本田飞度EV),太阳能路灯
注释
寿命长,充电快,温度范围宽,比能量低,价格昂贵。最安全的锂离子电池。
表14:钛酸锂的特性
图15比较了基于铅,镍和锂体系的比能。虽然锂铝(NCA)通过比其他系统储存更多容量而成为明显的赢家,但它仅适用于特定场景的电源使用。就比功率和热稳定性而言,锰酸锂(LMO)和磷酸锂(LFP)优异。钛酸锂(LTO)的容量可能较低,但它的寿命超过了其他大多数电池,并且具有最佳的低温性能。
图15:铅,镍和锂基电池的典型比能量
NCA享有最高的比能量; 然而,锰酸锂和磷酸铁锂在比功率和热稳定性方面优越。钛酸锂具有最好的使用寿命。
免责声明:以上内容转载自中国化学与物理电源行业协会,所发内容不代表本平台立场。全国能源信息平台联系电话:010-65367702,邮箱:hz@people-energy.com.cn,地址:北京市朝阳区金台西路2号人民日报社
能量密度达450Whkg,「恩力固态」开发可以在平流层使用的锂金属电池
大众在与Quantum Scape合作9年后,宣布于2025年开始生产固态电池,并应用于大众电动汽车,一次充电可达500英里(约804公里)行驶里程。今年4月,大众汽车在Quantum Scape测试了新一代固态电池,并对后者追加了1亿美元投资。近日,大众首席技术官Thomas Schmall在接受采访时透露,大众对开发新一代固态电池寄予厚望。
除此国外的汽车厂商中,丰田、福特、宝马等均已明确提出固态电池投入使用的时间线。
而国内的厂商中,今年1月10日,蔚来(NIO.US)宣布正式推出150kWh电池包,使用半固态电池。搭载该电池包的蔚来ES8续航里程将达到730公里。
宁德时代也曾在今年1月公开了两份关于固态电池的专利,分别为“一种固态电解质的制备方法”、“一种硫化物固态电解质片及其制备方法”。
由此可见,固态电池即将成为未来兵家必争之地。
电池技术,一直被认为是新能源汽车普及的瓶颈,锂离子电池的高温安全性、低温能效、能量密度、自重等问题无法得到根本的解决;其他如钠离子电池的能量密度低,在动力层面应用空间受限;氢燃料电池则因为高昂的成本,在乘用车领域无法大范围推广。
恩力固态 ,是目前国内为数不多从事固态锂电池研发生产的初创公司。在固态电解质材料、固态电解质隔膜、负极材料等方面已完成实验室研发,进入工艺开发阶段。其硫化物为电解质的全固态原型电池可实现-40-100ºC稳定工作温度区间、5C以上充放电、600次以上循环(100%DOD)。另一款基于固态电池技术积累开发而成的锂金属电池品,经客户验证能量密度达450Wh/kg。
就锂离子电池和固态锂电池的发展问题,恩力固态 的CEO车勇博士和36氪聊了聊。
一 锂金属二次电池与固态电池
二十一世纪以来,随着微电子技术的不断发展,电子设备日益增多,消费者对电源提出了越来越高的要求,从而使锂(离子)电池进入了大规模的实用阶段,逐步替代着铅酸电池等传统电池。
目前,锂离子电池已大量应用在消费电子产品、新能源汽车、航空航天及储能领域等,市场需求呈现逐年持续快速增长的态势。根据IIT的统计预测,预计到2022年全球锂电池总需求量和市场规模将分别达到125.4 GWh和422亿美元,未来年复合年增长率预计分别为14.9%和12.9%,将继续维持在较高水平。随着新能源汽车及智能电网等应用领域的快速发展,针对锂二次电池性能也提出了更高的要求。
金属锂负极以极高的容量(3860mAh/g)和最负的电势(-3.040V vs 标准氢电极)被称为二次锂电池“圣杯”电极。应用金属锂为负极的锂金属二次电池也被认为是高比能电池的终极形态。
事实上,锂金属二次电池的商业化历史要比今天的锂离子电池还要早一些,一家叫做Moli Energy的加拿大公司早在1987年就推出了锂金属二次电池成品,用二硫化钼作为正极,金属锂作为负极。能量密度超过100Wh/kg,在业内引起很大震动。这家公司之后于1989年推出其第二代产品,正极采用二氧化锰,负极继续采用金属锂。但在此时,其第一代产品开始出现安全事故,之后不得不全部召回并支付了巨额赔偿。1989年底公司破产清算,次年初被NEC收购。
NEC后来又制造了50万支电芯投入试验,历时2年,当时绝大部分电芯都出现了故障,而导致故障的“真凶”就是锂枝晶。
在同一时间段,获得2019年诺贝尔化学奖的John Goodenough等三位科学家(及一些并不为世人所知的科学家和工程师们)分别在锂离子电池的正极、负极、电解液、隔膜等方面取得了一系列重大突破。1990年2月14日,索尼正式对外发布了一款全新的采用钴酸锂正极和碳负极的锂离子二次电池,达到4.1V的电压,80 Wh / kg的能量密度。从此锂锂离子电池的大规模产业化拉开序幕,而锂金属二次电池便从市场上消失了。
直到近年全球各地对固态电池的研发兴起,又将锂金属负极再次推向台面。2020年9月固态锂电池研发公司Quantum Scape在美国上市,其实验室样品采用锂金属负极(反应),续航距离为普通锂离子电池的1.8倍,15分钟可充满 80%,电池不易劣化,38万公里时可以保持80%容量。股价迅速由10美元涨到130美元,其身后的投资者包括大众、比尔盖茨、索罗斯等。今年6月宣布即将在美国纳斯达克以SPAC方式上市的另一家美国初创企业Solid Power采用了硫化物固态电解质的同时也选择了锂金属负极这一选项。
事实上,在之前的三十年间,美日的多家研究机构对于固态锂电池的研究从未停止,主要包括诺贝尔奖得主锂离子电池之父John Goodenough教授在美国德克萨斯大学奥斯汀分校的实验室、日本东京工业大学菅野了次教授的实验室等。他们分别从不同的技术路线在固态电解质材料等方面取得了技术突破,技术路线主要包括氧化物和硫化物电解质材料。而当固态电解质材料的研发取得了突破后,人们希望可以重新利用锂金属为负极材料,利用固态电池体系去解决困扰业界三十余年的锂枝晶等难题。
2021年3月,据日经报道,一家初创公司恩力固态 (Enpower Greentech Inc.)与Softbank软银株式会社联合发布新闻,由双方共同研发的能量密度450Wh/kg级别的锂金属电池于近期成功验证,将应用于软银的平流层通信无人机。此外,双方在延长锂金属电池循环寿命的相关核心技术方面也取得了进展。相关核心技术包括能抑制锂金属枝晶的超薄(10nm以下)镀膜技术,以及能同时实现高电压和高库伦效率(充放电效率)的固态电解质界面技术。
二 固态锂电池和锂离子电池的差异
自从特斯拉在2008年推出第一款使用锂离子电池组作为动力的Roadster,国际锂离子电池的市场格局发生了巨大的变化。产能从日本向中国、韩国转移,2020年,中国的锂离子电池产量达188.5亿支,年产能160GWh。2016-2020年,年均复合增长率超过20%,但是最近两年来,虽然有大量新能源车型落地,电池的年增长率却降到12%-14%之间。
可见虽然政策和市场都有重大的倾斜,电池在整车的成本占比又超过30%,但是新能源汽车的发展并没有给电池的产量带来量级的提升。并不是因为电池产能所限,我们可以从公开数据中看到,国际锂价相对变化区间不大,在2017-2018电池用碳酸锂价格甚至腰斩。限制锂离子电池在新能源汽车领域更大范围应用的原因是其本身的性能。
1 成本和能量密度
数据显示,过去十年,锂电池的成本下降了近85%,2011年是3800元/KWh,2020年下降到578元/KWh。与此同时,锂离子电池能量密度提升了近3倍,2011年是80Wh/kg,2020年上升到270Wh/kg。但是这个能量密度已经接近了物理极限,未来进一步提升的空间很小。对于汽车而言,重要的指标续航里程也很难提升,除非加大电池组,但是目前长续航车型整车质量已经很大,因此能量密度在很大程度上制约了续航里程的提升。
一些固态电池开发者如Quantum Scape、Solid Power等,电池能量密度均已超过380Wh/kg。即对应同样重量的电池组,汽车的续航里程可提升30%-80%。未来随着研发的深入和工艺水平的提升,能量密度还将有进一步提升的空间。
从成本的角度来考量,固态锂电池中没有额外添加贵金属之类物质,但是减少了液体的电解质成分,按照主要成分金属锂的同比价格,在研发和工艺成本被摊薄后,同样电量的固态锂电池成本会比锂离子电池还要低一些。
2 安全性和稳定性
1995年索尼生产锂离子电池的日本群山工厂起火,100万18650电池付之一炬,起火原因是老化试验的电池爆炸。之后索尼对于锂离子电池增加了针刺等非常规试验以提高安全性,但是之后戴尔笔记本起火,导致索尼召回1000万块电池,并支付4.44亿美元赔偿。之后索尼将电池业务出售给村田制作所。
三星手机电池的多次爆炸起火事故则导致了其中国手机业务跌至谷底。
而在新能源汽车领域,不针对某一个特定品牌,电池的起火爆炸等事故都并不罕见。
在锂离子电池中,当电池内部温度因为各种原因异常升高时,PE隔膜熔化形成隔膜阻断。锂离子会集中穿过形成大电流,导致正负极短路和起火、爆炸。
而固态锂电池,因为没有电解液,不存在这种特殊的临界状态,即使进行针刺试验使其破裂,也没有起火爆炸的风险。
恩力固态的硫化物全固态电池目前已经实现600次以上的循环100%DOD,电池仅衰减20%。而在实验室环境,也实现了10C的充电,即6分钟电池充满电。
这同时衍生了另一个问题,目前的锂离子电池,很难实现超充,而超充是解决续航的最快路径。比如在超充领域布局最早的特斯拉,对应3C的超充尚没有普及到大部分车型,而可能近期会推出的V4超充仅针对Cybertruck一款车型。
对于以硫化物为电解质的固态锂电池,超充的制约条件却来自电网那一端。
3 低温可用性
无论是手机,还是新能源汽车,在冬季都面临电量危机,前一分钟可能还有50%的电量,之后可能瞬间归零。更严重的问题是,无法充电。
因为锂离子电池负极采用液态电解质,在低温环境电解质的流动性变差,放电和充电的过程都无法顺利进行。
软银之所以看好固态电池方向,除了高能量密度的因素外,固态电池优异的低温性能也应该是在极低温的平流层通信无人机上使用恩力固态 电池的原因。
三 恩力的产品发展路径
恩力固态 是一家全球化的公司,在美国、日本和中国均设有研发机构,合作伙伴包括诺贝尔奖得主锂离子电池之父John Goodenough教授、日本东京工业大学菅野了次教授。
恩力固态 采用硫化物电解质技术路线,相比于Quantum Scape为代表的氧化物技术路线,硫化物具有更高的离子导电率和温度适应性。现在恩力在硫化物固态电解质、固态电解质隔膜方面已经进入量产工艺准备阶段。Q2021年将启动100MWh产线建设。
恩力利用其在固态电池的技术积累,也开发出了半固态的锂金属电池。目前恩力的3500mAh锂金属电池已经进入中试阶段,年内将向大客户小批量供货,用于无人机等项目。并已开始布局下一阶段2021-2022即将开始的规模量产。届时,其固态电池和锂金属电池产能将达到200MWh,产品将应用于高附加值的商用电子产品和高端消费电子产品领域。
参考锂离子电池从研发成功到大规模商用的发展路径,固态锂电池也将经历相似的过程。在早期市场阶段开始小规模试产,在同时将精力投入工艺设备的研发,随着工艺的成熟成本不断下降,最终实现工业化生产,并投入规模化的市场应用。对于固态锂电池而言,新能源汽车这个应用场景是必然的趋势。
车勇把公司当前的发展阶段定位于产业化前期,重点是通过对消费测高性能电池市场的拓展,不断磨练工艺水平,提高产品良率,最终构建完整的固态电池供应链体系,并降低固态电池的生产制备成本。至于是否向动力电池市场渗透,车勇认为这反而是一个水到渠成的事情。
预期在2022-2023年,恩力将实现GWh级别的固态电池产能,利用固态电池的性能优势进入多种应用场景。在2024-2026年,达到10GWh级别的产能,进入新能源汽车领域。
四 目前固态锂电池在全球范围的发展状况
在固态锂电池领域,还有如下一些企业或产业同盟的发展动向值得关注。
1)固态锂电池开发方面领先的企业是拥有超过1000项专利的丰田。据计算,在与现有电池尺寸相同的情况下,丰田开发的全固态电池可使续航距离延长至2倍以上。丰田在电池开发方面与松下展开合作,目前纯电动汽车用锂电池的成本为每千瓦时约合1.3万日元,日本新能源产业技术综合开发机构(NEDO)与丰田等合作的项目提出了这样的目标:通过确立量产技术和实现量产效果等,到2025年把全固态电池的成本降至每千瓦时1.5万日元,到2030年降至1万日元,达到与锂电池同等的水平。
2)大众汽车计划最早于2022年与合作伙伴Quantum Scape开始试生产,大众曾多次投资已上市企业Quantum Scape,其固态电池续航距离能比锂离子电池延长1.8倍,达到730公里。充电15分钟即可达到总电量的80%。据悉电池不易劣化,行驶38万公里之后,容量仍能保持最初的80%。大众计划2024~2025年开始量产,最初的年产能为1GWh,之后计划增加20GWh的产能。规模相当于目前欧洲电池总产能的一半多,可满足数十万辆纯电动汽车的使用需求。QuantumScape(QS-US) 通过SPAC方式上市,目前市值约为120亿美元。
3)美国初创企业Solid Power 2021年5月在福特、BMW、能源投资公司 Volta Energy Technologies 领投的募资中筹集到 1.3 亿美元,用于电动车电池生产。并且正计划以SPAC方式上市,预计估值为 12 亿美元。宝马和福特宣布扩大对Solid Power的出资规模。据悉Solid Power的全固态电池理论上可使续航距离最高达到锂电池的2倍。宝马计划于2022年采购测试用电池,2025年之前开始对配备全固态电池的车辆进行路测,2030年之前上市。
4)三星SDI于5月25日宣布,将在2025年之前开发大型全固态电池单元和原型全固态电池单元,并于2027年开始量产。从2008年开始,三星SDI与三星高级技术学院、日本三星研发研究所等合作开发全固态电池。这些机构一直负责设计研发活性材料,2020年3月,三星技术研究院开发了一项独创技术,可以提高全固态电池的使用寿命和安全性,同时将其尺寸减半。
5)法国博洛雷集团(Bolloré)从2011年就开始尝试固态电池在电动车领域的商业化,其自主研发的电动汽车Bluecar搭载30kWh金属锂聚合物电池,续航为120km。大约有2900辆投放到了巴黎汽车共享服务项目Autolib,这也是国际上第一个采用固态锂电池的电动汽车案例。
BatScap选择全固态中的聚合物技术路线,正极材料采用LFP,负极材料采用金属锂,电解质采用聚环氧乙烷(PEO),但其Pack能量密度仅为100Wh/kg,且工作温度要求60~80℃,必须持续将电池加热至60°C以上来维持电池内部的导电能力。
6)德国博世+美国SEEO,成立于2007年的SEEO是美国劳伦斯伯克利国家实验室唯一授权拥有核心专利的电池公司,2015年博世(BOSCH)收购美国SEEO,并与日本GSYUASA(汤浅)公司、三菱重工共同建立了新工厂,主攻固态阳极锂离子电池。当时SEEO开发的固态电池就已实现350Wh/kg的能量密度,约是同等体积锂电池的两倍能量。但在2018年初,由于博世的战略变化,不再自行生产电池,也就宣告放弃对SEEO的投入。
7)2018年6月,日本经济产业省与日本新能源产业技术综合开发机构(NEDO)宣布启动新一代高效电池“全固态电池”核心技术的开发。该项目预计总投资100亿日元(约合5.8亿元人民币),丰田、本田、日产、松下等23家汽车、电池和材料企业,以及京都大学、日本理化学研究所等15家学术机构将共同参与研究,计划到2022年全面掌握全固态电池相关技术,到2030年前后将每千瓦时电池组的成本降至目前的三分之一左右。
8)Solid Energy日产、现代、村田制作所、TDK、三洋化成、三井金属、古河机械金属、旭硝子、出光兴产、日了造船等也都在进行这个领域的研发。
9)中国台湾厂商辉能科技在试产混成固态电池,其中液态部分不到3%。负极将从石墨转向高SiOx含量(14%以上——100%)的硅氧复合物。在2025年左右,SiOx硅比例达到100%程度的时候,与锂离子电池电池相比在能量密度上就会有明显的优势。
10)蔚来宣布,它将在2022年第四季度推出具有360Wh / kg的能量密度的固态电池,以蔚来量产的时间来看,它那种应该不是增长的固态电池,而是半固态电池,外界一直在猜测其电池合作方。
11)卫蓝新能源则在北京房山与江苏溧阳拥有两大生产基地。溧阳工厂计划生产无人机电池,产能设计2亿瓦时,生产可5C连续放电的270Wh/kg混合固液电池。在动力电池领域,卫蓝新能源完成了300Wh/kg以上高镍三元正极的混合固态电池设计开发,循环寿命达到1200次以上,预计在2022年量产。
12)清陶能源先后获得北汽、上汽、广汽等车企投资,并与合众新能源达成合作,共同推进固态电池的研发与应用,双方对新款哪吒U进行了近两年的联合研发和测试。2018年,清陶能源建成国内首条半固态电池产线,主要投用于特种电源、高端数码等领域。2019年7月,清陶能源年产10GWh半固态锂电池项目签约在江西省宜春市。
相关问答
锂电池 单节最低电压是多少?(7.4V锂电3200毫安)?你说的充电宝,里面电池一般都是并联,电压最大只有4.2V(也就是单节电池的电压)。比如小米的20000,就是6节容量型18650电池,每节3350mah戴森是电池串联,以V...
各类手机爆炸是怎么回事?持有锂电池技术的是一家加拿大公司,名叫MoliEnergy。正当他们准备大干一场的时候,却传来了噩耗——锂电池存在严重的安全隐患!问世还不到半年,这种锂电池就...