锂电池电芯 原理 锂电池为什么有内阻,测量方法都有哪些?

小编 2024-11-23 聚合物锂电池 23 0

锂电池为什么有内阻,测量方法都有哪些?

私信“锂电”二字(不是评论),即可领取10.99G锂电行业精华版资料!

来源:锂电派

锂电池为什么有内阻

锂电池的内阻,静态内阻和工作内阻常常不同,在不同环境下,温度不同内阻也有变化。是哪些因素影响了锂电池的内阻?

1

锂电池工作过程

如上图所示,锂离子电池充放电过程的物理模型。蓝色箭头表示充电,红色箭头表示放电。蓝绿相间的晶格结构为正极材料,黑色层状为负极材料。目前主流的锂离子电池,一般按照正极材料类型命名,磷酸铁锂、锰酸锂等即为正极材料的类型;负极为石墨材质;正极集流体铝箔,负极集流体为铜箔。

下面以放电为例,描述一下锂电池放电时的物理过程。

外部负载接通后,在电池本体以外形成电流通路。由于正负极之间存在电势差,负极附近的电子首先通集流体和外部导线向正极移动;负极周围的锂离子浓度升高。从负极经过外部电路到达正极的电子,与正极附近的锂离子结合,嵌入正极材料,正极附近的锂离子浓度降低。正负极之间的锂离子浓度差形成。这样,就完成了电池放电过程的第一推动。

随着锂离子在离子浓度差的推动下离开负极,负极附近出现空缺,负极材料内的锂离子,从负极脱嵌,进入电解液中;大量锂离子从电解液中穿越隔膜,自负极向正极移动。同时,原本与锂离子以结合形态存在的电子,则通过外部电路去往正极。电池开始了按照负载的需求进行的放电过程。

充电是放电的逆过程,同样的脱嵌,移动,嵌入几个阶段,只是推动过程发展的动力来自于充电机,而离子的运动方向是自正极向负极运动。这里不再赘述。

2

锂电池内阻构成

了解了锂电池的工作过程,那么过程中的阻碍因素,便形成了锂电池的内阻。

电池的内阻包括欧姆电阻和极化电阻。在温度恒定的条件下,欧姆电阻基本稳定不变,而极化电阻会随着影响极化水平的因素变动。

欧姆电阻主要由电极材料、电解液、隔膜电阻及集流体、极耳的连接等各部分零件的接触电阻组成,与电池的尺寸、结构、连接方式等有关。

极化电阻,加载电流的瞬间才产生的电阻,是电池内部各种阻碍带电离子抵达目的地的趋势总和。极化电阻可以分为电化学极化和浓差极化两部分。电化学极化是电解液中电化学反应的速度无法达到电子的移动速度造成的;浓差极化,是锂离子嵌入脱出正负极材料并在材料中移动的速度小于锂离子向电极集结的速度造成的。

3

锂电池内阻影响因素

从上面的过程可以推演出电池内阻的影响因素。

3.1 外加因素

温度,环境温度是各种电阻的重要影响因素,具体到锂电池,是由于温度影响电化学材料的活性,直接决定电化学反应的速度和离子运动的速度。

电流或者说负载的需求,一方面电流的大小与极化内阻有直接关联。大体趋势是电流越大,极化内阻越大。另一方面,电流的热效应,对电化学材质的活性产生影响。

3.2 电池自身因素

正极材料,负极材料,锂离子嵌入和脱嵌的难易程度,决定了材料内阻的大小,是浓差极化电阻的一部分。

电解液,锂离子在电解液中的移动速率,受电解液导电率的影响,是电化学极化电阻的主要构成部分。

隔膜,隔膜自身电阻,直接构成欧姆内阻的一部分,同时其对锂离子移动速率的阻碍,又形成了一部分电化学极化电阻。

集流体电阻,部件连接电阻,是电池欧姆内阻的主要组成部分。

工艺水平,极片制作工艺、涂料是否均匀、压实密度如何,这些电芯加工过程中工艺水平的高低,也会对极化内阻造成直接影响。

4

锂电池内阻测量

锂电池内阻测量方法,一般分为直流测量方法和交流测量方法两种。

4.1 直流内阻测量方法

使用电流源,给电池施加一个短时脉冲,测量其端电压与开路电压的差。用这个差值除以测试电流即认为是电池的直流内阻。

锂电池极化内阻会受到加载电流大小的影响,为了尽量避开这个因素,直流测量内阻方法的通电时间比较短,并且加载电流比较大。

理论上,测量电流越小,越不会引起极化反应,减少极化电阻的干扰。但由于电池内阻本身很小,都是毫欧量级,电流过小,电压检测仪器受限于测量精度,无法排除测量误差对结果的干扰。因此,人们权衡仪器精度和极化内阻的影响,找到一个平衡二者关系的测量电流值。

对于普通电池单体来说,测量电流一般在5C-10C左右,很大。随着电芯容量的增大,或者多个电芯并联,其内阻是减小的,因此,如果没有仪器精度的提高,测量电流是很难降下来的。

4.2 交流内阻测量方法

给电池加载一个幅值较小的交流输入作为激励,监测其端电压的响应情况。使用特定程序对数据进行分析,得出电池的交流内阻。分析得到的阻值,只与电池本身特性有关,与采用的激励信号大小无关。

由于电池电容特性的存在,激励信号的频率不同,其测量得到的阻值也不同。软件分析的结果可以用一组复数表示,横轴为实部,纵轴为虚部。这样,就形成了一个图谱,所谓交流阻抗谱,如上图所示。

通过进一步的数据分析,人们可以从交流阻抗谱中得到这只电池的欧姆电阻,SEI膜的扩散电阻,SEI膜的电容值,电荷在电解液中传递的等效电容值以及电荷在电解液中扩散电阻值,进而绘制出电池等效模型,进行电池性能的进一步研究。一种等效电池模型,如下图所示。

5

内阻在工程实践中的应用

内阻,作为锂电池的关键特性之一,对它的研究成果,可以在工程制造等多个领域得到应用。

内阻与电池荷电量有紧密关系,因此被应用于电池管理系统中的SOC估计;

内阻直接体现电池老化程度,有人把电芯内阻作为电池健康状态SOH的评估依据;

单体内阻一致性直接影响成组后的模组容量和寿命,因而被作为电芯分选配组的静态指标普遍应用;

内阻又是电池故障的重要指征,在动力电池包的故障诊断系统中,被研究使用;

内阻配合容量损失等指标,还可以判断电池是否存在析锂现象,被应用在梯次利用退役电池领域。

锂电池内阻测量方法

接下来除了介绍锂电池内阻的外部表现以外,还将收集整理的4种锂电池内阻测量方法汇总在下面。

1

锂电池内阻的构成

锂电池内阻主要包括两个部分,欧姆内阻和极化内阻在温度恒定的条件下,欧姆电阻基本稳定不变,而极化电阻会随着影响极化水平的因素变动。

欧姆电阻主要由电极材料、电解液、隔膜电阻及集流体、极耳的连接等各部分零件的接触电阻组成,与电池的尺寸、结构、连接方式等有关。锂电池的端电压,指锂电池被连接在回路中处于工作状态时,检测到的电池正负极之间的电压,其数值等于锂电池电势减去欧姆内阻占压后,剩余的电压值。

观察下面图形,展示的是锂电池放电过程的电压-时间曲线的开始一段。电池开始放电后,曲线有一个瞬间压降ΔU1,这是回路通电瞬间,电压传感器检测到的电池两端电压从开路电压(等于电池电势)切换到端电压的结果,ΔU1就是欧姆内阻占压,ΔU2则是在放电结束时候,断开回路时,电池端电压曲线上产生的一段电压回升,同样是欧姆内阻带来的影响,ΔU1与ΔU2是相同的。

能够检测到纯欧姆内阻的时间比较短暂,因为随着电流逐渐上升至额定回路电流的过程中,极化现象逐渐加强,两种内阻的作用将混合到一起,不能分别。测量欧姆内阻的时间窗口在1~2ms以内。

极化内阻,从电芯内由电流产生那一刻开始跟着产生,随着电流的增大而增大,是电池内部各种阻碍带电离子抵达目的地的趋势总和。极化电阻可以分为电化学极化和浓差极化两部分。电化学极化是电解液中电化学反应的速度无法达到电子的移动速度造成的;浓差极化,是锂离子嵌入脱出正负极材料并在材料中移动的速度小于锂离子向电极集结的速度造成的。

上图电压时间曲线上的ΔU3一段,是回路断开后,电池端电压逐渐回升的一段,是电池内部去极化过程的体现,ΔU3的数值就是极化内阻的占压。在不同的放电状态下,ΔU3的数值并不相同。

2

标准上的电池内阻测量方法

《FreedomCAR 电池试验手册》中的HPPC 测试实验,给出了锂电池内阻的一种典型测试方法——直流内阻测试法, 步骤如下:

(1)用恒流40A 限压4.2V 将电池充满;

(2)用100A电流放出10%DOD(放电深度Depth Of Discharge)的电量,此时电池SOC 为90%;

(3)静止1 小时;

(4)按下图脉冲功率试验图进行一次试验;

(5)重复(1)-(3)的试验,每次放电深度增加10%,直到放出90%DOD 进行最后的测试;

(6)将电池放出100%的DOD 。

电流时间曲线如上图所示。 t0 ~ t1 时刻,对电池以120A的电流放电;t1 ~ t2时

刻,电池断电静置;t2 ~ t3 时刻,对电池以100A 的电流充电。电池,内阻可以通过电池电压变化量与电流变化量的比值求出,具体计算公式如下:

式中Rd 为放电内阻, Rc 为充电内阻, Id为放电电流, Ic 为充电电流。脉冲放电和充电的时间不能过长,避免极化内阻产生明显影响。

3

一些锂电池内阻测试方法

通过上面的描述可看到,标准给出的直流内阻测试法,需要给电池一个脉冲大电流,这种测试方法的准确程度,不但与使用的充放电设备以及传感器的检测器具的精度有关,电池内阻本身大小,也会对误差产生影响。于是研究人员根据自身产品,设备条件研究出一系列方法,对锂电池内阻进行检测,下面列举其中几个比较典型的测试方式。

方法1,双电阻法测量电池内阻

秦辉在他的文章《电池内阻的测量》中介绍了利用双电阻法测量电池内阻的方法。

如图所示,电池串联一个电阻形成回路,测量负载电阻的分压,进而推算电池内阻。这是一个非常简易的方法,从接触电路开始,我们几乎就知道存在这么一个方法。使用这个方法的一个要点是,当外接电阻值与电池内阻越接近,测量结果的误差将越小。电阻计算公式:E/(r+ R)=U/R,所以 r=(E/U- 1)R

用单片机实现上述电阻测量原理,框图如下:

单片机主导的电池内阻测量过程如下:单片机复位后,其控制端输出高电平,将模拟开关的控制端IN 置1, 然后连续对电压表进行检测。

当检测到电压表有输入电压时, 单片机将模拟开关的IN 控制端置0,则D 端与S2端之间呈断开状态,此时电压表测量所得的电压值为电源的电动势E。单片机通过数据总线将数字电压表测量所得的电压数据存入单片机存储器中。

然后单片机再将模拟开关的IN 端置1, 则D 端与S2 端之间呈导通状态。此时电压表测量所得的电压值为模拟开关、电阻rˊ和R 三者承受的总电压Uˊ,单片机将该电压数据读入到单片机存储器中。利用串联电路分压公式U=100 Uˊ/199.5,单片机计算出U。再利用公式“r=(E/U- 1)R”,单片机计算出电池内阻r(公式中的r1=rˊ+0.5 =99.5Ω)。单片机通过接口电路将计算结果送入电压表显示电路,显示出电池内阻r 的值。

这个方法,可以利用单片机的功能实现自动测量和结果显示,但检测的精度还是由电阻精度和电压表精度决定。

方法2,不平衡电桥法电池内阻测量

作者李舒晨,在他的文章《不平衡电桥法电池内阻测量装置的原理与设计》中介绍了利用不平衡电桥测量电池内阻的方法。

不平衡电桥法测量电池内阻的原理如上图所示。其中R01 , R02 , R03为电桥内设电阻,

Rx 为含电动势E 的电池内阻。 电阻R00和开关K跨接在电桥A 至B 之间. 根据戴维南定理,从N、G两点看去,可有图( b)所示的等效电路。其中E0 为开路电压, R0 为等效电阻。

当电路满足电桥平衡条件R02 /R01 = R03 /Rx时,上述等效电路电压源E0 和等效电阻R0 均不因开关K的接通与断开状态而改变,即在开关K接通和断开状态下均有

E0 = E〔( R01+ R02 ) /( R01 + R02 + R03 + Rx )〕=E〔R01 /( R01 + Rx )〕

R0 = ( R01+ R02 ) // ( R03+ Rx ) =( R02// R03 ) + ( R01// Rx )

用上述原理在实验室测试电池内阻时,只要在N , G之间接入一只直流电流表,反复接通和断开开关K,并调节R01或R02,直到开关状态变化时,电流表读数不变,此时便可依公式算出电池内阻:Rx = R01 (R03 /R02 )。

将上述测量过程中使用的开关用电子开关取代,并用周期性电压控制开关反复通断。 将N 、G间的短路电流转换为电压信号,并在开关通断期间对电压信号分别进行采样保持形成两路电压,最后对两路电压进行差分放大送至平衡电压指示表,这就构成一个用不平衡电桥原理测量电池内阻的装置。

电桥电阻R01 、R02、 R03的选择影响测量灵敏度;电阻R00对电桥灵敏度及电池放电有影响。

方法3,电池内阻在线测量

作者陈宝明在他的文章《电池内阻在线测量实验系统的设计与制作》中介绍了一个比较常用的在线测量方法,交流注入法。

4

基本原理

实现电池内阻在线测量的基本原理如上图所示, 当信号源给电池注入一个交流电流信号,测量出电池两端产生的交流电压信号和输入的电流,就可计算出电池的内阻:

r =Vrm/I rms

式中:Vrms 为电池两端交流电压信号的有效值;Irms为输入电池中的交流电流信号有效值。

具体实现在线测量的系统框图,如上图所示。系统由输出输入回路、输入转换电路、取样电路、低噪声前置放大器、方波转换电路、乘法器电路、积分器电路、交流恒流信号产生电路、单片机控制系统、显示器电路、接口电路和计算机等组成。

输出的交流恒流信号接到电池两端, 再将电池内阻产生的电压信号, 从电池两端直接连接到输入转换开关电路。 注入电流回路和信号测量回路分开, 降低导线阻抗对电池内阻的影响,实现四引线连接。

由单片机控制输入转换开关,首先接通取样电路, 检测出注入电池回路中的电流值;再接通电池两端, 检测出内阻上产生的电压信号, 从而根据内阻计算公式,计算出电池内阻并显示。同时, 可通过接口电路,向PC 计算机输送相关信息, 存储相关数据, 并自动绘制充放电特性曲线。

上述方法中,直流内阻测试法,是国内外标准的典型测试方法,测试结果认可度较高;交流注入测试法,则多用在在线测量领域,作为车辆运行过程中,对动力电池性能监测的一种手段。

来源:锂电派

私信“锂电”二字(不是评论),即可领取10.99G锂电行业精华版资料!

锂离子电池鼓胀分析

【能源人都在看,点击右上角加'关注'】

锂离子电池具有能量密度高,体积小的优点[1],近年来,随着4G的普及,5G的到来,对于锂离子电池的要求更加苛刻,锂离子电池朝着更高能量密度、更快的充电速度发展。 然而能量越高,其危险性就越大,近年来社会上发生的锂电池安全事故越来越多,2018年~2019年上半年一共发生了60多起纯电动汽车起火事故,导致16万辆纯电动汽车召回[2],手机鼓胀、起火、爆炸的事故更是频发。 本文以一款客户投诉电池(简称客诉电池)的分析为切入点,研究该电池的起鼓原因,并实验模拟手机日常使用中可能存在的失效情况,并分析其机理。

实 验

1.1 客诉电池分析

对客诉电池进行电压内阻测试,根据电池编码进行系统查询,判断其出厂是否合格;对其进行充放电测试,判定是否可以正常进行充放电,判断电性能是否正常;测试气体成分,拆解进行电感耦合等离子体光谱分析法(ICP)、扫描电子显微镜法(SEM)测试,分析其失效原因。

1.2 过放模拟实验

采用6组电池,每组3只,以0.5 C、0.1 C、0.01 C、0.001 C分别将电池放电至3、2、1、0.5、0.2、0 V,放电后休眠1 h,再继续进行后续放电,观察是否鼓胀产气,拆解进行SEM、ICP分析;对放电至3与2.5 V的电池进行长期存储,观察其是否产气,测试其低压下长期存储电压内阻的变化情况。

1.3 高温浮充模拟实验

采用4组电池,每组3只,分别进行45、60、70 ℃浮充,60 ℃ (4.2~4.4 V)循环充电,测试其厚度变化,观察鼓胀产气情况,测试气体成分,拆解进行SEM、ICP分析。

1.4 设备与仪器

充放电设备采用ARBIN;电压内阻测试设备采用BK-300内阻测试仪;气体成分采用津岛质联用仪GCMS-2010测试;形貌采用扫描电子显微镜JSM-6510测试;微量金属元素含量采用电感藕合等离子体发射光谱仪 Optima 8000DV测试。

结果与分析

2.1 客诉电池分析

检测客诉电池六面外观(图1),未发现存在破损、腐蚀现象,排除封装破损导致电池起鼓。极耳无烧黑现象,排除外部短路,X-RAY显示电池极片状态正常,排除包覆不良导致的内部短路产气。电池内阻已经超出设备量程,电压2.65 V,电池无法进行正常的充放电测试。

图1 客诉电池外观监测

对客诉电池进行气体成分分析,结果如表1所示,鼓胀电池中主要气体成分为CO2、C2H6、CH4,正常电池的产气模型[3]有:高温浮充、存储产气,过放产气和过充产气。

表1 客诉电池气体成分分析 %

2.1.1 高温浮充、存储产气

在高电压下正极材料分解[1,4]产生O2、Co,如式(1)~(2)所示,O2与Co通过隔膜到达负极,与固体电解质界面膜(SEI膜)发生反应,导致SEI膜分解产生CO2,如式(3)~(5)所示,同时在高电压下SEI膜会自动修复产气,修复产气与化成后期产气机理一致[5],碳酸二甲酯(DMC)与碳酸甲乙酯(EMC)产生CH4、C2H6和C3H8等烷烃类气体,如式(6)~(13)所示。碳酸乙烯酯(EC)产生C2H4,如式(14)~(18)所示。

2.1.2 过放产气

在放电过程中负极电位从0.1 V (vs. Li+/Li)逐渐升高,正极电位从4.5 V(vs. Li+/Li)左右逐渐下降,当电池持续放电,负极中嵌锂已经完全脱出后,已经没有锂离子可以脱出维持其氧化电流,负极电势会持续升高,当负极电势升高至SEI膜的氧化电位使就会发生SEI膜的氧化分解,产生CO2,如式(19)所示,当继续过放,负极电势升高至3.4 V(vs. Li+/Li)左右达到铜溶解电位会发生铜箔溶解,如式(20)所示[6],此时电池电压在0.7 V以下。

2.1.3 过充产气

锂电池充电过程是正极锂离子脱出,嵌入负极,一般的商用电芯设计负极会稍微过量,防止过充[7]。当过充时,负极已经嵌满了锂离子,无法继续嵌锂,负极电位会持续下降,当负极电位降至0 V (vs. Li+/Li)时,达到析锂电位,负极锂离子开始析出,形成锂枝晶[8]。锂枝晶与电解液发生反应,产生气体,同时锂枝晶可能会刺穿隔膜,导致正负极直接接触,发生内部短路,导致电解液分解,产生大量气体[9]。轻微过充会影响电池的寿命,重度过充会导致电池鼓包,严重过充会导致电池起火、爆炸。

客诉电池ICP分析结果如表2所示,负极Co元素含量较高达到0.057 4%,新鲜电池钴含量为0.006 6%,客诉电池钴元素明显过高,正常来说,钴元素只存在于锂离子电池的正极,且结构稳定,负极不可能测试到钴元素,但是锂离子电池在使用过程中如果遇高温环境或者过充、浮充,均会导致正极的钴酸锂发生结构破坏,钴元素溶出,少量溶出并不会对电池造成影响,因为电解液中含有防过充添加剂,如碳酸亚乙烯酯(VC),它会与溶解出的钴元素形成稳定的络合物[10],钴元素不会通过隔膜进入负极破坏SEI膜,而如果长期在高温环境使用或者长期浮充、过充,溶解出的钴元素没有更多的过充添加剂来络合,就会通过隔膜进入负极,破坏SEI膜,电池在高电压环境下,电解液会自动修复SEI膜,从而产气,最终导致电池出现鼓胀[11]。

表2 客诉电池ICP测试数据 %

客诉电池ICP分析正极中含有0.007 8%的Cu元素,属于正常范围,正极、隔膜中微量的Cu元素是由于电芯制作过程中卷芯中微量水分与电解液反应生成HF腐蚀负极铜箔,此外电解液会分解形成微量的PF5氧化铜箔[12],形成微量的Cu2+。而如果电池制作过程中水分过高、电解液放置过久、温度过高,会产生较多的HF以及PF5,形成较多的Cu2+,在充放电过程中Cu2+会在正负极析出,严重影响电池的性能,甚至会影响到电池安全。

图2为客诉电池隔膜的SEM图,隔膜对正极侧已出现明显裂纹,隔膜对负极侧出现轻微裂纹,正极在满电后氧化性较强会将隔膜氧化,出现类似裂纹,负极出现的轻微裂纹应为正极导致延伸至负极侧。

(a)对正极侧 (b)对负极侧

图2 客诉电池隔膜的SEM图

根据以上分析,判断本次客诉电池长期处于高温高电压环境中,正极钴元素溶出,导致正极结构发生破坏,Co与O2导致SEI膜分解,SEI膜又在高电压状态下自行修复导致产气,电池鼓胀,电解液消耗完后电池中无离子通道,不能构成通路,导致电池无法进行充放电。同时,高压状态下正极侧具有强氧化性导致隔膜对正极侧出现氧化裂纹。

2.2 过放模拟分析

如图3所示,常温下正常电池过放至3、2、1、0.5、0.2、0 V后电压会迅速反弹,放电截止电压越低反弹后的电压越低,过放截止电压大于0.2 V的电池均未发生明显产气现象,过放至0 V的电芯出现了明显的产气现象。当过放截止电压高于0.2 V时,锂离子从负极脱嵌,而过放至0 V时,负极中已经没有足够的锂离子脱嵌形成氧化电流,SEI膜开始分解,导致产气。

图3 不同电压阶梯过放图

过放至0 V的电池主要产气为CO2,占比超过90%,如表3所示,其主要是由于SEI膜分解导致,原理如式(19)~(20)所示。

表3 过放气体成分 %

图4为长期对过放电池进行跟踪的情况,发现电压在反弹之后会下降,过放电压越低,反弹后下降速度越快,过放至2.5 V再静置38天后电压的K值均值为0.183 mV/h,放电至3 V的电池电压的K值为0.066 mV/h,正常电池的K值一般要求在-0.04~0.04 mV/h之间,低压下K值均大于正常电池的K值标准,过放截止电压越低,长期存储K值越大。过放电池内阻变化无明显规律。

(a)电压变化趋势 (b)内阻变化趋势

图4 过放至2.5、3 V电压、内阻变化趋势

对不同过放电电压电池进行ICP测试,过放至3、2、1、0.5、0.2 V均未明显析铜,而当过放至0 V时,正极片、隔膜中铜元素超过0.1%(质量分数),如表4所示,其原因为过放至电压大于0.2 V时,电池负极电势并未达到铜溶解电位,或只是短暂达到铜溶解电位,停止放电后,电池电压会迅速反弹,使其负极电势低于铜溶解电位,导致过放至0.2 V以上时,正极、隔膜铜含量均较少;而过放至0 V时,其负极中已经无足够的锂离子以维持其氧化电流,此时铜箔溶解、SEI膜分解以维持其氧化电流,导致正极、隔膜中铜含量较高。

表4 不同过放电电压电池ICP测试

2.3 高温浮充模拟分析

高温浮充电池经过长时间的浮充最终都产气鼓胀,45 ℃电池浮充26天鼓胀,60 ℃电池浮充6天鼓胀,70 ℃电池浮充4天就产生了鼓胀,如表5所示,温度越高,其内部发生反应越快,电液分解越快,所以鼓胀越快,而60 ℃(4.2~4.4 V)循环16天鼓胀,比60 ℃浮充明显持续时间长,说明4.2~4.4 V循环产生的钴溶出更慢。

表5 高温浮充鼓胀时间 天

对浮充的电池数据进行监控,60 ℃浮充时间到4 500 min时,电流开始增加,如图5(a)所示,说明电池内部开始发生反应,电流越来越大,直到电池鼓胀。图5(b)为4.2~4.4 V循环到100次时,容量迅速下降,说明电池中的活性锂已经明显变少,活性锂在不停修复SEI膜。

(a) 60 ℃浮充电流变化 (b)4.2~4.4 V浮充容量衰减图

图5 60℃浮充电流变化与4.2~4.4 V浮充容量衰减图

表6为高温浮充气体成分,含量最高的均为CO2,占比80%以上,其次为CH4和C2H6,说明其产气原理为SEI膜被破坏,电解液在高压下反复修复SEI膜导致产气,最终鼓胀,浮充产气的机理如式(1)~(18)所示。

表6 高温浮充气体成分 %

表7为高温浮充ICP测试数据,浮充电池的负极Co含量均超过了0.1%(质量分数),其原理为浮充导致正极锂离子持续脱出,正极结构被破坏,正极钴元素溶出,通过隔膜进入负极。钴元素含量与浮充时间以及温度关系较大,温度越高、时间越长,负极钴元素含量越多,正极结构破坏越严重。

表7 高温浮充ICP测试数据 %

结 论

本文以一次客户投诉为切入点,通过气体成分、ICP、SEM等手段分析了该客诉电池的鼓胀原因,并对其机理做了探讨。过放、过充模拟实验表明:正常电池过放截止电压高于0.2 V均不会导致电池鼓胀,正极、隔膜中的铜含量也属于正常水平;过放至0 V时,电池会发生明显产气现象,气体中CO2含量超过90%,同时正极、隔膜铜元素会超过0.1%(质量分数);电池低压长期存储K值会比正常水平大,过放截止电压越低,K值越大,但不会出现鼓胀现象,电池内阻无明显变化规律;高温浮充测试电池均发生鼓胀,4.4 V体系45 ℃浮充26天鼓胀,60 ℃浮充6天鼓胀,70 ℃浮充4天鼓胀,60 ℃(4.2~4.4 V)循环16天鼓胀,浮充起鼓电池负极钴含量均超过0.1%(质量分数),浮充产气主要为CO2、CH4、C2H6等气体。

参考文献:

[1]孔令丽,张克军,夏晓萌,蔡嘉兴,孙杰,杨玉秋.高电压锂离子电池高温浮充性能影响因素分析与改善[J].储能科学与技术,2019,8(06):1165-1170.

[2]郑雪芹.60次起火,16万召回,新能源汽车安全问题引关注[J].汽车纵横,2019(08):24-27.

[3]陈伟峰. 软包装锂离子电池产气机理研究和预测[D].清华大学,2012.

[4]卜芳,罗垂意,祝媛,袁中直,刘金成.钴酸锂电池高温储存失效分析[J].广东化工,2019,46(11):73-75+36.

[5]黄丽,金明钢,蔡惠群,郑明森,董全峰,尤金跨,林祖赓.聚合物锂离子电池不同化成电压下产生气体的研究[J].电化学,2003(04):387-392.

[6]李超. 锂离子电池电解液中杂质对铜集流体腐蚀的第一性原理研究[D].长沙理工大学,2017.

[7]王其钰,王朔,张杰男,郑杰允,禹习谦,李泓.锂离子电池失效分析概述[J].储能科学与技术,2017,6(05):1008-1025.

[8]颜雪冬,马兴立,李维义,曹长河,潘美姿.浅析软包装锂离子电池胀气问题[J].电源技术,2013,37(09):1536-1538.

[9]吕浩天. 锂电池火灾爆炸原因分析与控制措施研究[D].华南理工大学,2016.

[10]张大峰,刘炜,刘丽.软包锂电池高温胀气改善研究[J].电源技术,2019,43(02):231-233.

[11]李慧芳,高俊奎,李飞,黄家剑.锂离子电池浮充测试的鼓胀原因分析及改善[J].电源技术,2013,37(12):2123-2126.

[12] 黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术[M].北京:化学工业出版社,2007:235.

免责声明:以上内容转载自电池中国,所发内容不代表本平台立场。

全国能源信息平台联系电话:010-65367702,邮箱:hz@people-energy.com.cn,地址:北京市朝阳区金台西路2号人民日报社

相关问答

电芯 是什么?

1.电芯是一种装有电池正负极材料的组件,用于储存和释放电能。2.电芯的主要原理是通过化学反应将化学能转化为电能,并在需要时将储存的电能释放出来。电芯通...

磷酸铁 锂电池 电芯 哪个好?

磷酸铁锂电池好。性能是锂电池好些,锂电池容量大,14500一般是800mAH,磷酸铁锂的14500一般是600mAH,加上锂电池的3.6V标称电压,总放电能量将近是磷酸铁锂150...

万用表测 电芯 电压是什么 原理 ?

看电池电压是多少,然后打到比他大的量程档位去(最近的且比电池V数大的那个档位,这样比较精确,比如电池2V的就打到10V当--如果最近的是10V的话),再用万用表...

大神们, 锂电池 储能柜的 原理 是什么?

随着锂电技术的不断发展,以及世界各国对锂电池和新能源技术的大力支持,大型的锂电池储能系统装置已经被越来越多的研发和应用。那么首先来科普下什么是锂电池...

锂电池 的性能与温度有关系吗-ZOL问答

锂电池的电压是变动的,充电过程中电池电压由2.3V(按设计不同有不同)到4.3V(按设计),充电器是恒流恒压充电,先恒流充电,再恒压,最后涓流,电流不断变动的。有用...

比亚迪e5 动力电池 是什么电池 比亚迪e5动力电池工作 原理 - 汽...

[回答]qcwx_s2()

电芯 分容配对 原理 ?

是通过对电芯电池的容量进行精确测试,将容量相似的电芯组成一个电池组,以实现电池组内电芯容量匹配的技术。这可以提高电池组的性能和电池寿命,同时还能确保电...

双锂电和单锂电的区别?

1、双电芯的容量比单电芯大,是单电芯的2倍。2、单电芯只有一块电池,而双电芯由两块电池串联或并联组成。移动电源的容量是由内部储电单元供给,储电单元就是...

什么是锂离子 电池 的CID?中文名是什么?作用是什么? - 西米西...

currentinterruptdevice:电流切断装置作用:当电芯失效时(如过热、短路、过充等),内部将产生很多气体,压力增大时焊接到铝板及泄压片上的焊点脱落,...

锂电池 充电的 原理 _车坛

锂电池的充电过程一般分为四个阶段:涓流充电、恒流充电、恒压充电和充电终止。以下是关于冲电四个阶段的详解:1、涓流充电:涓流充电用来先对完全放...