锂电池控制电路 锂电池过充电,过放电,过流及短路保护电路原理及电路图

小编 2025-01-22 锂离子电池 23 0

锂电池过充电、过放电、过流及短路保护电路原理及电路图

下图为一个典型的锂离子电池保护电路原理图。该保护回路由两个MOSFET(V1、V2)和一个控制IC(N1)外加一些阻容元件构成。控制IC负责监测 电池电压与回路电流,并控制两个MOSFET的栅极,MOSFET在电路中起开关作用,分别控制着充电回路与放电回路的导通与关断,C3为延时电容,该电 路具有过充电保护、过放电保护、过电流保护与短路保护功能.

锂电池保护工作原理:

1、正常状态

在正常状态下电路中N1的“CO”与“DO”脚都输出高电压,两个MOSFET都处于导通状态,电池可以自由地进行充电和放电,由于MOSFET的导通阻抗很小,通常小于30毫欧,因此其导通电阻对电路的性能影响很小。

此状态下保护电路的消耗电流为μA级,通常小于7μA。

2、过充电保护

锂离子电池要求的充电方式为恒流/恒压,在充电初期,为恒流充电,随着充电过程,电压会上升到4.2V(根据正极材料不同,有的电池要求恒压值为4.1V),转为恒压充电,直至电流越来越小。

电池在被充电过程中,如果充电器电路失去控制,会使电池电压超过4.2V后继续恒流充电,此时电池电压仍会继续上升,当电池电压被充电至超过4.3V时,电池的化学副反应将加剧,会导致电池损坏或出现安全问题。

在带有保护电路的电池中,当控制IC检测到电池电压达到4.28V(该值由控制IC决定,不同的IC有不同的值)时,其“CO”脚将由高电压转变为零电 压,使V2由导通转为关断,从而切断了充电回路,使充电器无法再对电池进行充电,起到过充电保护作用。而此时由于V2自带的体二极管VD2的存在,电池可 以通过该二极管对外部负载进行放电。

在控制IC检测到电池电压超过4.28V至发出关断V2信号之间,还有一段延时时间,该延时时间的长短由C3决定,通常设为1秒左右,以避免因干扰而造成误判断。

3、过放电保护

电池在对外部负载放电过程中,其电压会随着放电过程逐渐降低,当电池电压降至2.5V时,其容量已被完全放光,此时如果让电池继续对负载放电,将造成电池的永久性损坏。

在电池放电过程中,当控制IC检测到电池电压低于2.3V(该值由控制IC决定,不同的IC有不同的值)时,其“DO”脚将由高电压转变为零电压,使V1 由导通转为关断,从而切断了放电回路,使电池无法再对负载进行放电,起到过放电保护作用。而此时由于V1自带的体二极管VD1的存在,充电器可以通过该二 极管对电池进行充电。

由于在过放电保护状态下电池电压不能再降低,因此要求保护电路的消耗电流极小,此时控制IC会进入低功耗状态,整个保护电路耗电会小于0.1μA。

在控制IC检测到电池电压低于2.3V至发出关断V1信号之间,也有一段延时时间,该延时时间的长短由C3决定,通常设为100毫秒左右,以避免因干扰而造成误判断。

4、过电流保护

由于锂离子电池的化学特性,电池生产厂家规定了其放电电流最大不能超过2C(C=电池容量/小时),当电池超过2C电流放电时,将会导致电池的永久性损坏或出现安全问题。

电池在对负载正常放电过程中,放电电流在经过串联的2个MOSFET时,由于MOSFET的导通阻抗,会在其两端产生一个电压,该电压值 U=I*RDS*2, RDS为单个MOSFET导通阻抗,控制IC上的“V-”脚对该电压值进行检测,若负载因某种原因导致异常,使回路电流增大,当回路电流大到使 U>0.1V(该值由控制IC决定,不同的IC有不同的值)时,其“DO”脚将由高电压转变为零电压,使V1由导通转为关断,从而切断了放电回路, 使回路中电流为零,起到过电流保护作用。

在控制IC检测到过电流发生至发出关断V1信号之间,也有一段延时时间,该延时时间的长短由C3决定,通常为13毫秒左右,以避免因干扰而造成误判断。

在上述控制过程中可知,其过电流检测值大小不仅取决于控制IC的控制值,还取决于MOSFET的导通阻抗,当MOSFET导通阻抗越大时,对同样的控制IC,其过电流保护值越小。

5、短路保护

电池在对负载放电过程中,若回路电流大到使U>0.9V(该值由控制IC决定,不同的IC有不同的值)时,控制IC则判断为负载短路,其“DO”脚 将迅速由高电压转变为零电压,使V1由导通转为关断,从而切断放电回路,起到短路保护作用。短路保护的延时时间极短,通常小于7微秒。其工作原理与过电流 保护类似,只是判断方法不同,保护延时时间也不一样。

常用的锂电池充电电路,你知道哪些?

常用的锂电池充电电路

一、对锂电池的了解

1、锂电池的充电:

根据锂电池的结构特性,最高充电终止电压应为4.2V,不能过充,否则会因正极的锂离子拿走太多,而使电池报废。其充放电要求较高,可采用专用的恒流、恒压充电器进行充电。通常恒流充电至4.2V/节后转入恒压充电,当恒压充电电流降至100mA以内时,应停止充电。

充电电流(mA)=0.1~1.5倍

电池容量(如1350mAh的电池,其充电电流可控制在135~2025mA之间)。常规充电电流可选择在0.5倍电池容量左右,充电时间约为2~3小时。

2、锂电池的放电

因锂电池的内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极,以保证在下次充电时锂离子能够畅通地嵌入通道。否则,电池寿命就相应缩短。为了保证石墨层中放电后留有部分锂离子,就要严格限制放电终止最低电压,也就是说锂电池不能过放电。放电终止电压通常为3.0V/节,最低不能低于2.5V/节。电池放电时间长短与电池容量、放电电流大小有关。电池放电时间(小时)=电池容量/放电电流。锂电池放电电流(mA)不应超过电池容量的3倍。(如1000mAH电池,则放电电流应严格控制在3A以内)否则会使电池损坏。

标准地,一般锂电池的充放电公式可以定义为:

充放电时间(分钟)=容量*1.1/电流(mA)*60

其中,1.1代表系数;

3、锂电池保护电路

充电保护电路,选择芯片DW01和GTT8205的组合,可以做到短路保护,过充过放电的保护。

该电路主要由锂电池保护专用集成电路DW01,充、放电控制MOSFET1(内含两只N沟道MOSFET)等部分组成,单体锂电池接在B+和B-之间,电池组从P+和P-输出电压。充电时,充电器输出电压接在P+和P-之间,电流从P+到单体电池的B+和B-,再经过充电控制MOSFET到P-。在充电过程中,当单体电池的电压超过4.35V时,专用集成电路DW01的OC脚输出信号使充电控制MOSFET关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。放电过程中,当单体电池的电压降到2.30V时,DW01的OD脚输出信号使放电控制MOSFET关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,DW01的CS脚为电流检测脚,输出短路时,充放电控制MOSFET的导通压降剧增,CS脚电压迅速升高,DW01输出信号使充放电控制MOSFET迅速关断,从而实现过电流或短路保护。

二、单节锂电池充电电路 \

1、二极管充电电路

原理: 如下图一,DC5V流经肖特基二极管D1后,经过一个限流电阻R1接到电池。其中Q1、R2、R3、LED1为充电指示电路。随着被充电池电压的上升,充电电流将逐渐减小,待电池充满后D1、R1上的压降将降低,从而使Q1截止,LED将熄灭。为保证电池能够充足,请在指示灯熄灭后继续充1小时左右。

2、4054充电电路

3. TP4056充电电路

TP4056是一款完整的单节锂离子电池采用恒定啊电流/恒定电压线性充电器。其底部带有散热片的SOP8封装与较少的外部元件数目,使得TP4056成为便携式应用的理想选择。TP4056可以适合USB电源和适配器电源工作。下面以简捷的电路说明一下TP4056在设计中需要注意的地方。

(1) 充电电流可以通过电阻R8进行编程。公式:IBAT = 1200 / R8 精度在10%;

(2) 充电状态,红灯亮,绿灯灭;充满状态,红灯灭,绿灯亮;

(3) TEMP正常连接(连接到电池的NTC),当出现欠压,电池温度过高、过低、无电池等故障状态时,红灯灭,绿灯灭;图三电路中,TEMP直接接地,因此不具有此状态;

(4) BAT接10UF的电容,无电池(TEMP端接地)时,红灯闪烁,绿灯亮;

(5) Layout的时候,由于TP4056为ESOP8封装,所以芯片底部要开窗,使芯片更好的接地,且Bottom层也要适当的加大开窗面积,加强TP4056的散热;

(6) 如果需要增加热调节电流功能,需要在DC5V串一个0.25欧1206封装的电阻;

加0.25欧电阻的作用:降低内部MOSFET两端的压降能够显著减少IC中的功耗。在热调节期间,这具有增加输送至电池的电流的作用。对策之一是通过一个外部元件(例如一个电阻器或二极管)将一部分功率耗散掉。

充电器在工作的时候会发热,在发热的情况下,比如规定最大充电电流为1A,实际上发热以后充电电流达不到1A,越热输出电流越小,为了解决这个问题,就是连接一个电阻,将一部分功率耗散掉。

让这个电阻承担一部分热量,减小芯片发热,来增加锂电池充电电流。

三、双节锂电池充电电路

1、DC5V给7.4V锂电池充电

注意事项

1.对于蓝牙音响等存在电池边充边放的应用,2脚BAT上应有足够的电容,确保BAT上的纹波小于100mV,否则BAT上的纹波会干扰IP2322的检测,出现拔掉VIN输入,充电灯还亮的问题;

2.R9的作用:保护芯片的第8脚,防止充电器上的瞬时高压损坏芯片;

3.R15的作用:防止出现拔掉充电线,充电灯还亮的问题;

4.肖特基二极管D2的正向电流要大于1A,不能使用IN5819(S4),建议使用经常用到的SS14、SS24、SS34等;

5.Layout时,电感应尽量靠近芯片摆放,且电感下面不能走线,电感同层下面的铜要挖空。

2. DC9V经过二极管给7.4V锂电池充电电路

原理: 如下图五,DC9V流经肖特基二极管D5后,经过一个限流电阻R18接到7.4V电池。其中Q3、R21、R17、LED6为充电指示电路。随着被充电池电压的上升,充电电流将逐渐减小,待电池充满后D5、R18上的压降将降低,从而使Q3截止,LED6将熄灭。为保证电池能够充足,请在指示灯熄灭后继续充1小时左右。

注意事项:本电路的优点是电路简单、成本低;缺点稳定性低,在成本没有严格要求的情况下,优先选用充电管理芯片给7.4V锂电池充电,尤其是双节、三节、四节......电池的充电。

3. DC9V通过TCS6207充电管理芯片给7.4V锂电池充电电路

(1)Layout时,电感应尽量靠近芯片摆放,且电感下面不能走线,电感同层下面的铜要挖空。

四、三节锂电池充电电路(略)

3节或者多节锂电池充电的电路,有需要的请私信小编,我们工程师可以为您选型或者设计。

相关问答

在放电 电路 中,怎么 控制锂电池 的放电电流?如:一节3.7v锂电池...

在放电电路中,怎么控制锂电池的放电电流?如:一节3.7v锂电池输出1A电流应该怎样做?相机电池共3条回答5699浏览串联电阻大大增加了电池的内阻,会影响正常工...

12v 锂电池 充电保护 电路 ?

3个18650正接正负接负,并联起来为1组,9个18650可做3组,再将3组串联起来就可以成为一个约12v的电池组。电池组就分出4个插头作充电用。最理想用平衡充电器对...

锂电工具 控制 板接线顺序?

1.锂电工具控制板的接线顺序是有规定的。2.这是因为控制板的接线顺序直接影响到工具的正常运行和安全性。如果接线顺序错误,可能会导致电流不稳定、电路短路...

想用以上 电路 做个 锂电池 充放电保护 电路 ,需加入充电指示灯,请问怎么加入,另放电是3组3.3V的,3组?

这个是锂电池保护板的电路,也就是锂电池芯配合这个电路成为完整的电池(比如手机电池)。这个集成在电池里的保护电路是锂电池的防线,充放电的保护电压相当保...

锂电池 充电保护 电路 原理?

锂电池充电保护电路的原理是通过监测电池的电压、电流和温度等参数,以确保电池在充电过程中不会出现过充、过放、过流和过温等情况,从而保护电池的安全性和寿...

锂电池 的继电器能做什么用?

过充保护放电电路、过放保护充电电路和限流电阻组成;脱桥式磁保持继电器串联在锂电池组的充放电主回路中,过充保护放电电路和过放保护充电电路分别与脱桥式磁...

8.4伏 锂电池 充电保护 电路 ?

电路采用了LM3420—8.4专用锂电池充电控制器。当电池组电压低于8.4V时,LM3420输出端①脚(OUT)无输出电流,晶体管Q2截止,因此,电压可调稳压器LM317输出恒定电...

锂电池 充电指示 电路 原理是什么?-设计本有问必答

锂离子电池的正极材料通常有锂的活性化合物组成,负极则是特殊分子结构的碳。常见的正极材料主要成分为LiCoO2,充电时,加在电池两极的电势迫使正极...

电动车 锂电池 自动保护解决办法?

可以将电池外壳剖开,将充电器的两极越过保护电路直接连接电池两极(注意极性,可先用万用表测试正负极),充电几分钟,电池电压升高,保护电路即可打开。然后可...

电动车 锂电池 充不进电如何修复 - 汽车维修技术网

[回答]假如锂电池出现了充不进电的状况,可能是电池损坏了。假如电池损坏了,那是无法修复的。假如是由于电动车的调节器或其他的电路损坏影响到电池无法充...