锂电池欠压保护 锂电池保护板的基础知识及常见不良分析

小编 2025-01-20 聚合物锂电池 23 0

锂电池保护板的基础知识及常见不良分析

来源:锂电圈子

锂电池保护板是对串联锂电池组的充放电保护;在充满电时能保证各单体电池之间的电压差异小于设定值(一般±20mV),实现电池组各单体电池的均充,有效地改善了串联充电方式下的充电效果;同时检测电池组中各个单体电池的过压、欠压、过流、短路、过温状态,保护并延长电池使用寿命;欠压保护使每一单节电池在放电使用时避免电池因过放电而损坏。

成品锂电池组成主要有两大部分,锂电池芯和保护板,锂电池芯主要由正极板、隔膜、负极板、电解液组成;正极板、隔膜、负极板缠绕或层叠,包装,灌注电解液,封装后即制成电芯,锂电池保护板的作用很多人都不知道,锂电池保护板,顾名思义就是保护锂电池用的,锂电池保护板的作用是保护电池不过放、不过充、不过流,还有就是输出短路保护。

01

锂电池保护板组成

1、控制ic,2、开关管,另外还加一些微容和微阻而组成。控制ic 作用是对电池的保护,如达到保护条件就控制mos进行断开或闭合(如电池达到过充、过放、短路、过流、等保护条件),其中mos管的作用就是开关作用,由控制ic开控制。

锂电池(可充型)之所以需要保护,是由它本身特性决定的。由于锂电池本身的材料决定了它不能被过充、过放、过流、短路及超高温充放电,因此锂电池锂电组件总会跟着一块精致的保护板和一片电流保险器出现。锂电池的保护功能通常由保护电路板和PTC协同完成,保护板是由电子电路组成,在-40℃至+85℃的环境下时刻准确的监视电芯的电压和充放回路的电流。

02

保护板的工作原理

1、过充保护及过充保护恢复

当电池被充电使电压超过设定值VC(4.25-4.35V,具体过充保护电压取决于IC)后,VD1翻转使Cout变为低电平,T1截止,充电停止.当电池电压回落至VCR(3.8-4.1V,具体过充保护恢复电压取决于IC)时,Cout变为高电平,T1导通充电继续, VCR必须小于VC一个定值,以防止频繁跳变。

2、过放保护及过放保护恢复

当电池电压因放电而降低至设定值VD(2.3-2.5V,具体过充保护电压取决于IC)时, VD2翻转,以短时间延时后,使Dout变为低电平,T2截止,放电停止,当电池被置于充电时,内部或门被翻转而使T2再次导通为下次放电作好准备。

3、过流、短路保护

当电路充放回路电流超过设定值或被短路时,短路检测电路动作,使MOS管关断,电流截止。

03

保护板主要零件的功能介绍

R1: 基准供电电阻;与IC内部电阻构成分压电路,控制内部过充、过放电压比较器的电平翻转;一般在阻值为330Ω、470Ω比较多;当封装形式(即用标准元件的长和宽来表示元件大小,如0402封装标识此元件的长和宽分别为1.0mm和0.5mm)较大时,会用数字标识其阻值,如贴片电阻上数字标识473, 即表示其阻值为47000Ω即47KΩ(第三位数表示在前两位后面加0的位数)。

R2: 过流、短路检测电阻;通过检测VM端电压控制保护板的电流 ,焊接不良、损坏会造成电池过流 、短路无保护,一般阻值为1KΩ、2KΩ较多。

R3:ID识别电阻或NTC电阻(前面有介绍)或两者都有。

总结:电阻在保护板中为黑色贴片,用万用表可测其阻值,当封装较大时其阻值会用数字表示,表示方法如上所述,当然电阻阻值一般都有偏差,每个电阻都有精度规格,如10KΩ电阻规格为+/-5%精度则其阻值为9.5KΩ -10.5KΩ范围内都为合格。

C1、C2: 由于电容两端电压不能突变,起瞬间稳压和滤波作用。总结:电容在保护板中为黄色贴片,封装形式0402较多,也有少数0603封装(1.6mm长,0.8mm宽);用万用表检测其阻值一般为无穷大或MΩ级别;电容漏电会产生自耗电大,短路无自恢复现象。FUSE:普通FUSE或PTC(Positive Temperature Coefficient的缩写,意思是正温度系数);防止不安全大电流和高温放电的发生,其中PTC有自恢复功能。

总结:FUSE在保护板中一般为白色贴片,LITTE公司提供FUSE会在FUSE上标识字符D-T,字符表示意思为FUSE能承受的额定电流,如表示D额定电流为0.25A,S为4A,T为5A等。

U1: 控制IC;保护板所有功能都是IC通过监视连接在VDD-VSS间的电压差及VM-VSS间的电压差而控制C-MOS执行开关动作来实现的。

Cout: 过充控制端;通过MOS管T2栅极电压控制MOS管的开关。

Dout: 过放、过流、短路控制端;通过MOS管T1栅极电压控制MOS管的开关。

VM: 过流、短路保护电压检测端;通过检测VM端的电压实现电路的过流、短路保护

(U(VM)=I*R(MOSFET))。

总结:IC在保护板中一般为6个管脚的封装形式,其区别管脚的方法为:在封装体上标识黑点的附近为第1管脚,然后逆时针旋转分别为第2、3、4、5、6管脚;如封装体上无黑点标识,则正看封装体上字符左下为第1管脚,其余管脚逆时针类推)C-MOS:场效应开关管;保护功能的实现者 ;连焊、虚焊、假焊、击穿时会造成电池无保护、无显示、输出电压低等不良现象。

总结:CMOS在保护板中一般为8个管脚的封装形式,它时由两个MOS管构成,相当于两个开关,分别控制过充保护和过放、过流、短路保护;其管脚区分方法和IC一样。

在保护板正常情况下,Vdd为高电平,Vss、VM为低电平,Dout、Cout为高电平;当Vdd、Vss、VM任何一项参数变换时,Dout或Cout的电平将发生变化,此时MOSFET执行相应的动作(开、关电路),从而实现电路的保护和恢复功能。

04

保护板常见不良分析

一、 无显示、输出电压低、带不起负载:

此类不良首先排除电芯不良(电芯本来无电压或电压低),如果电芯不良则应测试保护板的自耗电,看是否是保护板自耗电过大导致电芯电压低。如果电芯电压正常,则是由于保护板整个回路不通(元器件虚焊、假焊、FUSE不良、PCB板内部电路不通、过孔不通、MOS、IC损坏等)。具体分析步骤如下:

(一)、用万用表黑表笔接电芯负极,红表笔依次接FUSE、R1电阻两端,IC的Vdd、Dout、Cout端,P+端(假设电芯电压为3.8V),逐段进行分析,此几个测试点都应为3.8V。若不是,则此段电路有问题。

1. FUSE两端电压有变化:测试FUSE是否导通,若导通则是PCB板内部电路不通;若不导通则FUSE有问题(来料不良、过流损坏(MOS或IC控制失效)、材质有问题(在MOS或IC动作之前FUSE被烧坏),然后用导线短接FUSE,继续往后分析。

2. R1电阻两端电压有变化:测试R1电阻值,若电阻值异常,则可能是虚焊,电阻本身断裂。若电阻值无异常,则可能是IC内部电阻出现问题。

3. IC测试端电压有变化:Vdd端与R1电阻相连。Dout、Cout端异常,则是由于IC虚焊或损坏。

4. 若前面电压都无变化,测试B-到P+间的电压异常,则是由于保护板正极过孔不通。

(二)、万用表红表笔接电芯正极,激活MOS管后,黑表笔依次接MOS管2、3脚,6、7脚,P-端。

1.MOS管2、3脚,6、7脚电压有变化,则表示MOS管异常。

2.若MOS管电压无变化,P-端电压异常,则是由于保护板负极过孔不通。

二、 短路无保护:

1. VM端电阻出现问题:可用万用表一表笔接IC2脚,一表笔接与VM端电阻相连的MOS管管脚,确认其电阻值大小。看电阻与IC、MOS管脚有无虚焊。

2. IC、MOS异常:由于过放保护与过流、短路保护共用一个MOS管,若短路异常是由于MOS出现问题,则此板应无过放保护功能。

3. 以上为正常状况下的不良,也可能出现IC与MOS配置不良引起的短路异常。如前期出现的BK-901,其型号为‘312D’的IC内延迟时间过长,导致在IC作出相应动作控制之前MOS或其它元器件已被损坏。注:其中确定IC或MOS是否发生异常最简易、直接的方法就是对有怀疑的元器件进行更换。

三、 短路保护无自恢复:

1. 设计时所用IC本来没有自恢复功能,如G2J,G2Z等。

2. 仪器设置短路恢复时间过短,或短路测试时未将负载移开,如用万用表电压档进行短路表笔短接后未将表笔从测试端移开(万用表相当于一个几兆的负载)。

3. P+、P-间漏电,如焊盘之间存在带杂质的松香,带杂质的黄胶或P+、P-间电容被击穿,IC Vdd到Vss间被击穿.(阻值只有几K到几百K)。

4. 如果以上都没问题,可能IC被击穿,可测试IC各管脚之间阻值。

四、 内阻大:

1. 由于MOS内阻相对比较稳定,出现内阻大情况,首先怀疑的应该是FUSE或PTC这些内阻相对比较容易发生变化的元器件。

2. 如果FUSE或PTC阻值正常,则视保护板结构检测P+、P-焊盘与元器件面之间的过孔阻值,可能过孔出现微断现象,阻值较大。

3. 如果以上多没有问题,就要怀疑MOS是否出现异常:首先确定焊接有没有问题;其次看板的厚度(是否容易弯折),因为弯折时可能导致管脚焊接处异常;再将MOS管放到显微镜下观测是否破裂;最后用万用表测试MOS管脚阻值,看是否被击穿。

五、 ID异常:

1. ID电阻本身由于虚焊、断裂或因电阻材质不过关而出现异常:可重新焊接电阻两端,若重焊后ID正常则是电阻虚焊,若断裂则电阻会在重焊后从中裂开。

2. ID过孔不导通:可用万用表测试过孔两端。

3. 内部线路出现问题:可刮开阻焊漆看内部电路有无断开、短路现象。

来源:锂电圈子

浅谈“一种锂电池欠压自动关机保护并可充电激活的电源控制电路”

当前,锂离子电池因其高比能量、高比功率、高转换率、长寿命、无污染等优点,已成为全球高新技术产业发展的重要方向,并广泛应用于电动汽车和动力储能领域。

锂离子电池按照正极材料不同可分为多种类型,主流的有磷酸铁锂、锰酸锂、钴酸锂及三元材料等,但这几种锂离子单体电池的额定电压平台都比较低,磷酸铁锂只有3.2Vdc,锰酸锂、钴酸锂和三元材料也只有3.6~3.7Vdc,难以满足设备输入供电电压的要求,实际应用中需要把若干电池进行串联成组,才能达到设备正常工作电压范围。然而,不同于铅酸、镍镉、镍氢等二次电池,锂离子电池必须考虑充、放电时的安全性,以防止其电化学特性失控甚至发生电池烧毁。因此,在使用过程中对锂离子电池进行监控和保护就显得非常重要,杜绝电池过充、过放、过温、过流及短路等故障的发生,从而最终达到提高产品安全性能和延长电池使用寿命的目的。

电池管理系统(BMS)便在这一背景下应运而生,承担起了“电池保姆”或“电池管家”的重要角色。BMS对锂离子电池良好的监控和保护作用建立在BMS稳定可靠的运行之上,而要保证BMS正常工作,必须保证BMS供电输入回路的稳定可靠。在电动汽车领域,BMS的供电电源由低压车载铅酸蓄电池直接提供;但在动力储能领域,BMS的供电电源一般是由单独的DC/DC开关电源模块转换后提供,DC/DC开关电源模块输入端连接到锂电池组的总正母线和总负母线之间,通过直流转换到合适的电源电压平台后再提供给后级BMS使用。

图1为目前动力储能领域高压电气主回路与BMS供电电源的典型电气拓扑结构,高压电气主回路由锂电池组、主正继电器K2、主负继电器K3、预充继电器K1、预充电阻R等高压器件组成,高压上电和下电逻辑由BMS控制,通常使用的高压上电和下电逻辑为:BMS上电后自检,自检成功后闭合主负继电器K3,然后进入预充电流程,先闭合预充继电器K1,当检测到负载端P+、P-预充电压达到锂电池组总压的92%时,再闭合主正继电器K2,并同时断开预充继电器K1,高压上电完成;在锂电池组投入运行过程中,如果BMS检测到极端保护条件(过充、过放、过温、过流、短路)触发时,就要进入高压下电流程,先断开主正继电器K2,再断开主负继电器K3。

图1 动力储能领域高压电气主回路与BMS供电电源的典型电气拓扑结构

图1中虚线框内为BMS的供电电源部分,直接取自高压锂电池组两端,经过DC/DC开关电源模块转换为12Vdc或24 Vdc低压直流电源VCC/GND,并与高压锂电池组电气隔离。

图1所示BMS供电电源的这种电气链接关系存在一个较大的安全隐患:DC/DC开关电源模块的自身功耗和BMS的自身功耗会一直消耗锂电池组的能量,特别是在锂电池组处于待机状态(既不充电也不放电),甚至发生放电欠压保护动作后,锂电池组本身已经处于亏电状态,在这样的情况下,虽然负载端P+、P-已经断开,但DC/DC开关电源模块和BMS还处于工作状态,它们的自身功耗还继续存在,这样势必导致锂电池组进一步亏电和过放电,轻则缩短锂电池组的使用寿命,重则使锂电池组直接报废。

在实际电气搭建和布局拉线时,为了解决这一问题,多数电气工程师一般会在DC/DC开关电源模块输入端串接一个空气开关,在锂电池组投入使用时会手动合闸,使BMS和高压上电;当锂电池组处于亏电状态时手动拉闸,使BMS和高压下电。但这种解决办法需要人工值守,在锂电池组处于亏电状态时,如果不能及时拉闸断电,就有可能导致锂电池组严重过放电而报废,另外,因为BMS已经断开了高压继电器,外部充电装置无法通过充电激活方式对锂电池组恢复充电。

鉴于此,本文要解决的技术问题是提供一种带电池欠压自动关机保护并可充电自动激活的电源控制电路。

本文在目前所使用的BMS供电电源电气原理图上只增加了6个反流二极管D1~D6、1个自复位手动激活开关K5以及1个供电继电器K4就彻底解决了因DC/DC开关电源模块和BMS自身待机功耗而可能导致锂电池组过放电甚至报废的这一安全隐患,详细电路原理如图2所示,该电源控制电路具备三种功能:其一,可以在锂电池组发生放电欠压保护动作后,通过预先设定的软件程序自动切断DC/DC开关电源模块的供电输入回路,这样DC/DC开关电源模块和BMS就会彻底断电;其二,可以在锂电池组既不充电也不放电的状态下,即持续待机状态达到一定时间时,通过预先设定的软件程序自动切断DC/DC开关电源模块的供电输入回路,这样DC/DC开关电源模块和BMS就会彻底断电;其三,在DC/DC开关电源模块和BMS彻底断电后,能够利用外部充电装置通过充电激活的方式对锂电池组恢复充电;其四,在DC/DC开关电源模块和BMS彻底断电后,能够使用自复位手动激活开关通过手动激活的方式使锂电池组投入运行。

因此,本文提出的BMS电源控制电路既克服了因DC/DC开关电源模块和BMS自身待机功耗而可能导致锂电池组过放电甚至报废的严重缺陷,又解决了DC/DC开关电源模块和BMS彻底断电后充电自动激活的问题。

图2 本文提出的带电池欠压自动关机保护并可充电自动激活的电源控制电路

在图2所示带电池欠压自动关机保护并可充电自动激活的电源控制电路中,反流二极管D1~D6可选择普通整流二极管或者是肖特基二极管,自复位手动激活开关K5可选择自复位按钮开关或者自复位转换开关,供电继电器K4可选择常开型功率继电器,上述器件要满足过流能力(即DC/DC开关电源模块供电输出功率)和直流耐压值(即达到锂电池组直流总压值以上)的要求,其工作原理和过程描述如下:

一、锂电池组充电自动激活到充电保护动作

(1)充电装置(或来自功率转换系统PCS)合闸上电后,输出直流高压电经P+、反流二极管D3、DC/DC开关电源模块输入级、反流二极管D6和P-构成低压充电回路,对DC/DC开关电源模块进行供电,DC/DC开关电源模块将充电装置输出的直流高压转换为12Vdc或24 Vdc低压直流电源VCC/GND后给BMS供电,BMS被充电激活唤醒;

(2)BMS上电后,进入高压上电和预充电流程,依次闭合各高压继电器,同时闭合供电继电器K4,因为充电装置输出的直流电压高于锂电池组直流总压,充电装置便经P+、主正继电器K2、锂电池组、主负继电器K3和P-构成高压充电回路,对锂电池组进行充电,同时经由P+、反流二极管D3(或主正继电器K2、反流二极管D1及供电继电器K4)、DC/DC开关电源模块输入级、反流二极管D6(或经反流二极管D5及主负继电器K3)和P-构成低压充电回路,对DC/DC开关电源模块进行供电;

(3)在充电过程中,当BMS检测到充电保护条件(过充、过温、过流)触发时,就要进入高压下电流程,依次断开各高压继电器,充电高压回路断开,停止充电,此时BMS的供电将由锂电池组、反流二极管D1、供电继电器K4、DC/DC开关电源模块输入级、反流二极管D5组成的低压放电回路提供;

(4)锂电池组充电保护动作后将处于不充电也不放电的待机状态,当持续待机状态达到一定时间时,BMS通过预先的软件设定程序控制供电继电器K4断开,切断DC/DC开关电源模块的供电输入回路,这样DC/DC开关电源模块和BMS就会彻底断电,整个电气系统将处于零功耗状态。

二、锂电池组手动激活到放电保护动作

(1)手动按住自复位激活开关K5约3秒钟,锂电池组经反流二极管D2、自复位手动激活开关K5、DC/DC开关电源模块输入级、反流二极管D5构成低压放电回路,对DC/DC开关电源模块进行供电,DC/DC开关电源模块将锂电池组直流高压转换为12Vdc或24 Vdc低压直流电源VCC/GND后给BMS供电,BMS被手动激活唤醒;

(2)BMS上电后,进入高压上电和预充电流程,依次闭合各高压继电器,同时闭合供电继电器K4,此时自复位手动激活开关K5已经释放,经自复位手动激活开关K5的低压放电回路已经断开,代替的是锂电池组经反流二极管D1、供电继电器K4(或经主正继电器K2和反流二极管D3)、DC/DC开关电源模块输入级、反流二极管D5(或经反流二极管D6和主负继电器K3)构成低压放电回路,继续对DC/DC开关电源模块进行供电;

(3)在放电过程中,当BMS检测到放电保护条件(过放、过温、过流、短路)触发时,就要进入高压下电流程,依次断开各高压继电器,放电高压回路断开,停止放电,此时BMS的供电将由锂电池组、反流二极管D1、供电继电器K4、DC/DC开关电源模块输入级、反流二极管D5组成的低压放电回路提供;

(4)如果锂电池组放电保护动作是由电池过放即电池欠压保护所引起的,放电高压回路断开后,等待BMS保存完数据,BMS就立即控制供电继电器K4断开;如果锂电池组放电保护动作是由过温、过流、短路保护所引起的,放电高压回路断开后,锂电池组将处于不充电也不放电的待机状态,当持续待机状态达到一定时间时,BMS通过预先的软件设定程序控制供电继电器K4断开。供电继电器K4断开即切断了DC/DC开关电源模块的供电输入回路,这样DC/DC开关电源模块和BMS就会彻底断电,整个电气系统将处于零功耗状态。

综上,本文针对目前动力储能领域BMS供电电源结构中存在的重大缺陷,提供了一种带电池欠压自动关机保护并可充电自动激活的电源控制电路,既克服了因DC/DC开关电源模块和BMS自身待机功耗而可能导致锂电池组过放电甚至报废的弊端,又解决了DC/DC开关电源模块和BMS彻底断电后充电自动激活的问题,具有较大的实用价值。

相关问答

锂电池欠压保护 是什么意思?

欠压保护就是指当被保护线路的电源电压低于一定数值时,保护器切断该线路;当电源电压恢复到正常范围时,保护器自动接通。因为蓄电池是不可以过度放电的。所以...

锂电池欠压保护 解除方法?

1解除方法有多种,但需要根据具体情况选择适合的方法2当锂电池电压过低时,常常会启动欠压保护机制,导致电池无法正常工作。解除方法可以是:在安全的环境下,...

如何设置 锂电池欠压保护 ?电压高与2.4伏时输出高电平,低于2.4伏时输出低电平?

锂电池欠压保护其实就是一个电压比较器电路按题主要求高于2.4V电压要输出高电平,低过2.4V电压输出低电平。我们只要需设计一个2.4V的电压电路就以了。使用低电...

锂电池 低压 保护 怎么解除?

电池电压低于控制器工作状态,需要补充电源时,系统显示“欠压”。一般来说,即时充电就足够了。这是一种防止电池过度放电的保护装置。电池不能过度放电。如果对...

锂电池 单体 欠压保护 是什么意思?

答:锂电池单体欠压保护是什么意思?把电池打开用电表量,找到断的电极板更换就可以。1、当线路电压降低到临界电压时,保护电器的动作,称为欠电压保护,其任务...

48v锂电 欠压保护 是多少伏?

是42伏。一般电动车多是12V的电池组成,48V锂电池是有4块电瓶组成的,那么它的欠压计算方式就是1.75V*6*4=42V,所以选择控制器的时候低压保护为42V。欠压保护...

锂电池保护 板有没有 欠压保护 ?

当然有,还有短路保护,温度保护呢当然有,还有短路保护,温度保护呢

锂电池欠压 继续骑什么后果?

控制器有欠压保护,会自动断电导致不能骑行,电池欠压严重会影响电池寿命。亏电状态时间越长,电池损坏越严重。电动车在欠压的情况下继续骑行,会损坏电瓶,影...

21伏 锂电池欠压 值多少?

11伏锂电池欠压保护值在9V左右。11伏锂电池实际是一个锂电池组,内部由3块同型号、同容量3.7V锂电池串联,共计11.1V电压,单块锂电池的放电保护电压(欠压)通...

72v20串 锂电池保护 欠压 ?

72v锂电池欠压保护是63V。从标准入手,按照0.5C2放电率规则,20AH的电池是以2A电流放电,放电至单格电压降至1.75V时的电容量。因此,72V(6块电瓶)欠压值为,1....