锂电池的基础知识 锂电池基础知识

小编 2024-11-23 电池定制 23 0

锂电池基础知识

采用含有锂元素的材料作为电极的电池。它是现代高性能电池的代表。今天发一些锂电池的基础知识,各们朋友想了解那方面可以留言!锂电老兵马工整理后再发出分享给大家!

名词简介

锂离子电池是一种充电电池,它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌:充电池时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。

锂离子电池容易与下面两种电池混淆:

(1)锂电池:存在锂单质。

(2)锂离子聚合物电池:用多聚物取代液态有机溶剂。

组成部分

钢壳/铝壳/圆柱/软包装系列:

(1)正极——活性物质一般为锰酸锂或者钴酸锂,现在又出现了镍钴锰酸锂材料,电动自行车则用磷酸铁锂,导电集流体使用厚度10--20微米的电解铝箔。

(2)隔膜——一种特殊的复合膜,可以让离子通过,但却是电子的绝缘体。

(3)负极——活性物质为石墨,或近似石墨结构的碳,导电集流体使用厚度7-15微米的电解铜箔。

(4)有机电解液——溶解有六氟磷酸锂的碳酸酯类溶剂,聚合物的则使用凝胶状电解液。

(5)电池外壳——分为钢壳(现在方型很少使用)、铝壳、镀镍铁壳(圆柱电池使用)、铝塑膜(软包装)等,还有电池的盖帽,也是电池的正负极引出端。

作用机理

锂离子电池以碳素材料为负极,以含锂的化合物作正极,没有金属锂存在,只有锂离子,这就是锂离子电池。锂离子电池是指以锂离子嵌入化合物为正极材料电池的总称。锂离子电池的充放电过程,就是锂离子的嵌入和脱嵌过程。在锂离子的嵌入和脱嵌过程中,同时伴随着与锂离子等当量电子的嵌入和脱嵌(习惯上正极用嵌入或脱嵌表示,而负极用插入或脱插表示)。在充放电过程中,锂离子在正、负极之间往返嵌入/脱嵌和插入/脱插,被形象地称为“摇椅电池”。

工作状态和效率

锂离子电池能量密度大,平均输出电压高。自放电小,好的电池,每月在2%以下(可恢复)。没有记忆效应。工作温度范围宽为-20℃~60℃。循环性能优越、可快速充放电、充电效率高达100%,而且输出功率大。使用寿命长。不含有毒有害物质,被称为绿色电池。

充电

充电是电池重复使用的重要步骤,锂离子电池的充电过程分为两个阶段:恒流快充阶段和恒压电流递减阶段。恒流快充阶段,电池电压逐步升高到电池的标准电压,随后在控制芯片下转入恒压阶段,电压不再升高以确保不会过充,电流则随着电池电量的上升逐步减弱到设定的值,而最终完成充电。电量统计芯片通过记录放电曲线可以抽样计算出电池的电量。锂离子电池在多次使用后,放电曲线会发生改变,锂离子电池虽然不存在记忆效应,但是充、放电不当会严重影响电池性能。

充电注意事项

锂离子电池过度充放电会对正负极造成永久性损坏。过度放电导致负极碳片层结构出现塌陷,而塌陷会造成充电过程中锂离子无法插入;过度充电使过多的锂离子嵌入负极碳结构,而造成其中部分锂离子再也无法释放出来。

充电量等于充电电流乘以充电时间,在充电控制电压一定的情况下,充电电流越大(充电速度越快),充电电量越小。电池充电速度过快和终止电压控制点不当,同样会造成电池容量不足,实际是电池的部分电极活性物质没有得到充分反应就停止充电,这种充电不足的现象随着循环次数的增加而加剧。

放电

第一次充放电,如果时间能较长(一般3至4小时足够),那么可以使电极尽可能多的达到最高氧化态(充足电),放电(或使用)时则强制放到规定的电压、或直至自动关机,如此能激活电池使用容量。

但在锂离子电池的平常使用中,不需要如此操作,可以随时根据需要充电,充电时既不必要一定充满电为止,也不需要先放电。像首次充放电那样的操作,只需要每隔3至4个月进行连续的1至2次即可。

化学解析

概述:和所有化学电池一样,锂离子电池也由三个部分组成:正极、负极和电解质。电极材料都是锂离子可以嵌入(插入)/脱嵌(脱插)的。

正极:正极材料,如上文所述,可选的正极材料很多,目前主流产品多采用锂铁磷酸盐。不同的正极材料对照:

正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。充电时:LiFePO4→Li1-xFePO4+xLi+xe放电时:Li1-xFePO4+xLi+xe→LiFePO4

负极:负极材料,多采用石墨。新的研究发现钛酸盐可能是更好的材料。

负极反应:放电时锂离子脱插,充电时锂离子插入。充电时:xLi+xe+6C→LixC6放电时:LixC6→xLi+xe+6C

电解质溶液

溶质:常采用锂盐,如高氯酸锂(LiClO4)、六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF4)。溶剂:由于电池的工作电压远高于水的分解电压,因此锂离子电池常采用有机溶剂,如乙醚、乙烯碳酸酯、丙烯碳酸酯、二乙基碳酸酯等。有机溶剂常常在充电时破坏石墨的结构,导致其剥脱,并在其表面形成固体电解质膜(solidelectrolyteinterphase,SEI)导致电极钝化。有机溶剂还带来易燃、易爆等安全性问题。

主要优点

(1)电压高:单体电池的工作电压高达3.7-3.8V(磷酸铁锂的是3.2V),是Ni-Cd、Ni-H电池的3倍。

(2)比能量大:目前能达到的实际比能量为555Wh/kg左右,即材料能达到150mAh/g以上的比容量(3至4倍于Ni-Cd,2--3倍于Ni-MH),已接近于其理论值的约88%。

(3)循环寿命长:一般均可达到500次以上,甚至1000次以上,磷酸铁锂的可以达到2000次以上。对于小电流放电的电器,电池的使用期限,将倍增电器的竞争力。

(4)安全性能好:无公害,无记忆效应。作为Li-ion前身的锂电池,因金属锂易形成枝晶发生短路,缩减了其应用领域:Li-ion中不含镉、铅、汞等对环境有污染的元素:部分工艺(如烧结式)的Ni-Cd电池存在的一大弊病为“记忆效应”,严重束缚电池的使用,但Li-ion根本不存在这方面的问题。

(5)自放电小:室温下充满电的Li-ion储存1个月后的自放电率为2%左右,大大低于Ni-Cd的25-30%,Ni、MH的30-35%。

(6)可快速充放电:1C充电30分钟容量可以达到标称容量的50%以上,放电可以提供支持大电流3C/5C 高倍率放电。

(7)工作温度范围高,工作温度为-25~45°C,随着电解液和正极的改进,期望能扩宽到-40~70°C。

看完这篇文,锂电池入门

不关注新能源,还算合格投资者么?

过去几个月,新能源汽车概念反复席卷资本市场,不仅消费者关注,资本也跃跃欲试。连特斯拉和一众造车新势力也成为市场焦点,引得各行业巨头纷纷跨界入场。

你以为新能源的油门踩到底了吗?不,还没加满。

随着“碳达峰、碳中和”的提出,新能源车已不仅是一种新概念交通工具,更是国家顶层设计的一部分。

国务院办公厅2020年11月2日发布的《新能源汽车产业发展规划(2021-2035年)》显示,预计到2025年,国内新能源汽车新车销售量将达到汽车新车销售总量的20%左右,而当前这一数据约为4%~5%之间——这意味着市场至少有三倍的成长空间 [1][2]。

所谓新能源车,其实也包括混合动力电动汽车(HEV),燃料电池电动汽车(FCEV)等其它技术路线。不过当前的语境下,这个词被提起时一般仅指纯电动车路线 ,即我们熟悉的特斯拉,以及一众造车新势力。

而纯电动车的核心部件则是:锂电池。

陈闷雷丨作者

一萌、普通酱丨编辑

放大灯团队丨策划

纯电动车人人都懂,但是了解锂电池的人就不多了。

锂电池是一个上下游链条长,专业性很强的复杂产品,不可能用一篇文章讲清所有细节。本文将聚焦于核心的几个环节,旨在为读者勾勒基本的锂电池技术图谱 ,让大家了解其核心原材料、关键技术与未来趋势。

电动车驱动的千亿市场

作为一种充电电池,锂电池的工作原理是:通过锂离子(Li⁺)在正负极之间定向移动来实现充放电功能。它广泛应用于电动车、消费电子及储能三个领域。其中电动车用锂电池,通常称为动力电池,是目前增长较快,未来预期最为乐观的应用领域。

数据来源:东莞证券[3]

据沙利文数据统计,我国锂电池市场规模从2014年645.3亿元增长至2018年的1494.7亿元人民币,年复合增长率达23.4%。若以此做参考,则动力锂电池行业产值约在698亿左右。

随着电子产品迭代、新能源汽车强势发展以及政府对于提高节能环保要求,锂电池的市场规模有望进一步扩大,预计2023年市场规模有望达到3294.8亿元,相应的动力电池将实现1600亿以上的规模 [4]。

数据来源:正略钧策[4]

产业链方面,锂电池上游为锂、石墨以及稀有金属矿等原材料;中游为电池正负极、电解液、隔膜等关键材料供应商,中游末端为电池制造商,它们将上游原材料制成不同规格产品;下游为产品应用终端,依照应用领域可大致分为动力电池、消费电子及储能三大类。

信息来源:公开资料整理

锂电池的四种关键材料

锂电池是如何发电的?

在锂电池工作时,锂离子参与氧化还原反应,将化学能转化为电能。一款锂电池产品的评价指标包括能量密度、循环寿命、倍率性能(不同电流下的放电性能)、安全性能以及适用温度等。

从锂电池的成本构成看,正极、负极、电解液和隔膜为四大关键原材料,在成本中的占比远高于束线、连接器以及导电剂等其它材料 ——这与锂电池基本工作原理一致[4]。

数据来源:正略钧策[4]

正极材料

当前,正极材料是锂电池的核心材料,是决定电池性能的关键因素 ,对产品最终的能量密度、电压、使用寿命以及安全性等有着直接影响,也是锂电池中成本最高的部分。正因此,锂电池往往用正极材料命名, 如三元电池,就是使用三元材料做正极的锂电池。

锂电池能量密度,就是指电池的平均单位体积或质量能释放出的电能 ,能量密度越高一般意味着电池续航公里数越高。该指标是一款锂电池能否享受政府补贴的重要依据之一。

不同正极材料差距明显,适用领域也不一样。常见的正极材料可以分为钴酸锂(LCO)、锰酸锂(LMO)、磷酸铁锂(LFP)和三元材料(NCM)。

钴酸锂是最早实现商业化的正极材料,其能量密度高于镍氢及铅酸等充电电池,最早体现出锂电池的发展潜力,但十分昂贵且循环寿命低,仅适用于3C电子产品。锰酸锂虽成本低,但能量密度不佳,在早期的慢速电动车,如电瓶车等领域有一定用量,如今主要用于电动工具以及储能领域,少见于动力电池。

电池标准循环寿命是指在特定的充放电流程下,电池容量衰减到某一规定值之前,电池能经受的充电与放电循环次数。根据GB/T 31484-2015 《电动汽车用动力蓄电池循环寿命要求及试验方法》,要求汽车动力电池经过500次充放电后,放电容量不低于初始容量的90%,或1000次充放电不低于80%。

当前主要应用于电动车领域的,是三元材料以及磷酸铁锂两条技术路线。 在2020年锂电池正极材料出货占比中,分列第一(46%)和第二(25%)[5]。

数据来源:公开资料整理

三元材料的核心优势在于能量密度高。同体积、同质量下,续航时间较其它技术路线大幅领先。但其缺陷也非常明显:安全性差,受到冲击和处于高温环境时,起火点比较低。近期热度较高的针刺和过充等安全测试中,大容量的动力三元电池很难过关。正是安全性能上的缺陷,一直限制着三元材料技术路线的大规模装配与集成应用。

磷酸铁锂则恰好与三元材料相反,能量密度与续航均表现一般,但安全性却十分优秀。 其晶体结构为独特的橄榄石型,空间骨架结构不易发生形变,使其在高温环境下仍能保持稳定。三元材料在约150℃~250℃的条件下即会开始分解并放出氧气,导致电解质燃烧,相较之下磷酸铁锂的分解温度则在600℃左右,安全优势非常明显 [6]。

基于上述优点,很多三元电池无法通过的安全测试,磷酸铁锂都能通过;另一方面,磷酸铁锂电池的使用寿命也有巨大优势,其循环次数远超其它技术路线,这正应对电动汽车消费者的两个关键诉求:安全、耐用。

当前,三元电池的装机量出现下滑,磷酸铁锂电池市场份额正在快速提高。统计数据显示,2020年,国内动力电池累计销量达65.9GWh,其中,三元锂电池共装车38.9GWh,占比61.1%,累计下降4.1%;磷酸铁锂电池装车24.4GWh,占比38.3%,累计增长20.6%,成为销量同比唯一增长的动力电池类型[7]。

除了安全性优势,磷酸铁锂销量快速上升的另一个主要因素,是便宜。 长期以来,造成三元电池原材料成本(占比近90%)居高不下的主因,就是因其对钴的需求较大[6]。钴是一种稀有的矿物,非常昂贵且开采极不稳定,价格波动剧烈,供应链也十分脆弱,极易影响下游产业。

在早年,由于政府补贴的存在,三元电池的高成本问题并不突出,但伴随着近年补贴力度的持续下降,其成本压力也愈发沉重, 迫使电池制造少寻找替代材料。

磷酸铁锂的成本优势就集中在其不含钴,从下图可以看到即使吨价处于高位时,也远低于三元材料。

数据来源:国信证券[8]

同时,随着充电桩数量的快速增加,也能弥补磷酸铁锂电池的续航问题。典型磷酸铁锂电动车续航约为300~400km,足以满足市内交通需求,三元电池在这种应用场景下无法体现核心优势。

在成本与基建的双重驱动下,越来越多的车企选择磷酸铁锂技术路线也就不令人意外了。甚至是依靠三元电池起家的动力电池巨头宁德时代,也正在快速增加磷酸铁锂电池的产能,并为国产特斯拉Model 3标准续航版本供应磷酸铁锂电池。

不过三元电池的发展没有停滞。这一技术路线长期趋势,是通过高镍低钴的配比,即所谓的高镍三元材料进行降本。

根据镍钴锰三种元素的占比,三元材料可以分为111、523、622和811四种主要类型。从市占率看,目前的5系(即523)三元材料仍是主流 。2020年在三元材料市场的市占率超过50%;8系(即811)电池则凭借高镍化趋势实现爆发,市占率从2018年的6%,提升至2020年的24%,潜力巨大[9][10]。

高镍三元电池一方面减少了昂贵的钴金属使用量,成本更可控,另一方面则是电池容量大幅提升,更契合消费者需求。近年国产电动汽车的续航里程快速增加,高镍电池功不可没。

但相应的,镍含量的上升意味着加工难度的快速上升,本就存在隐患的安全性更是进一步下降。在811电池大规模装配的2020年,自燃事故频出,导致这一技术路线饱受质疑。

仅广汽Aion S,首款大规模使用811电池的车型,也是目前811新能源车龄最长的车型,在2020年5月到8月,就连续发生了三起自燃事故,而这只是811电池起火的冰山一角[11]。高镍三元材料的安全性缺陷,是电池生产商必须解决的问题, 否则很难说服乘用车消费者购买,更不可能用于对安全性要求更高的商用车辆。

除了镍钴锰(NCM)三元材料,目前还有一种采用镍钴铝(NCA)合金作为正极的三元材料。与NCM相比,NCA的能量密度进一步提高,但安全性能仍没有太多改善。目前,特斯拉是最主要的镍钴铝电池使用者, 在2020年4月份还申请了可提高电池寿命的新型生产技术专利。

不过虽受龙头青睐,NCA技术路线在国内却十分罕见,2020年在国内三元材料市场的出货量占比仅有4%,全球目前主要生产商仅有松下[12]。

负极材料

锂电池负极材料由活性物质、粘结剂和添加剂制成糊状胶合剂后,涂抹在铜箔两侧,经过干燥、滚压制得,作用是储存和释放能量,主要影响锂电池的循环性能等指标。

负极材料按照所用活性物质,可分为碳材和非碳材两大类:

碳系材料包括石墨材料(天然石墨、人造石墨以及中间相碳位球)与其它碳系(硬碳、软碳和石墨烯)两条路线;

非碳系材料可细分为钛基材料、硅基材料、锡基材料、氮化物和金属锂等。

信息来源:公开资料整理

与正极材料不同,锂电池负极虽路线同样众多,最终产品却很单一,人造石墨是绝对主流。 数据显示,2020年中国人造石墨出货量约为30.7万吨,在负极材料出货总量中的占比高达84%,较2019年水平进一步提升5.5个百分点[3]。

相较于其它材料,人造石墨循环性能好、 安全性占优且工艺成熟、原材料易获取,成本较低,是非常理想的选择。

石墨负极最核心的问题,则是石墨负极材料能量密度的理论上限为372mAh/g,而行业头部公司的产品已可实现365mAh/g的能量密度,逼近理论极限,未来的提升空间极为有限,急需寻找下一代替代品 [13]。

新一代的负极材料中,硅基负极是热门候选者。其具有极高的能量密度,理论容量比可达 4200mAh/g,远超石墨类材料[14]。但作为负极材料,硅也有严重缺陷,锂离子嵌入会导致严重的体积膨胀,破坏电池结构,造成电池容量快速下降。目前通行的解决方案之一是使用硅碳复合材料,硅颗粒作为活性物质,提供储锂容量,碳颗粒则用来缓冲充放电过程中负极的体积变化,并改善材料的导电性,同时避免硅颗粒在充放电循环中发生团聚。

基于此,硅碳负极材料被认为是前景最佳的技术路线,逐渐获得产业链内企业的关注。 特斯拉的Model 3已经使用了掺入10%硅基材料的人造石墨负极电池,其能量密度成功实现300wh/kg,大幅领先采用传统技术路线的电池[14]。

不过与石墨负极相比,硅碳负极除了加工技术仍不成熟外,较高的成本也是障碍。当前的硅碳负极材料市场价格超过15万元/吨,是高端人造石墨负极材料的两倍。未来量产后,电池制造商也会面临与正极材料相似的成本控制问题。

电解液

电解液在锂电池中,主要作为离子迁移的载体,保证离子在正负极之间的传输。其对电池安全性、循环寿命、充放电倍率、高低温性能、能量密度等性能指标都有一定影响。

电解液一般由高纯度的有机溶剂、电解质锂盐和添加剂等原料按一定比例配制构成。按质量划分,溶剂质量占比 80%~90%,锂盐占比10%~15%,添加剂占比在5%左右;按成本划分,锂盐占比约40%~50%, 溶剂占比约30%、添加剂占比约10%~30%[15]。

相较于其它三种材料,锂电池对电解液的要求最为复杂,需具备多种特性:

离子电导性能好,离子迁移阻力要低;化学稳定性高,不可与电极材料、电解液、隔膜等发生有害副反应; 熔点低,沸点高,在较宽的温度范围内保持液态; 安全性好,制备工艺不复杂,成本低,无毒无污染。

目前,由于较好的性能与较低的成本,六氟磷酸锂(LiPF6)是主流的锂盐溶质。 其在各类非水溶剂中有较好的溶解度和较高的电导率,化学性质相对稳定,安全性好,且对环境污染也小。但缺陷同样明显:六氟磷酸锂对水分比较敏感,热稳定性也差,最低60℃就可能开始分解,电池性能将快速衰减,低温环境的循环效果则比较一般,适应温度范围窄。

此外,六氟磷酸锂对其纯度、稳定性要求非常高,生产过程涉及低温、强腐蚀、无水无尘等苛刻工况条件,生产难度也比较大。

新一代锂盐中,双氟磺酰亚胺锂(LiFSI),被认为有望替代六氟磷酸锂。相较于传统锂盐,LiFSI的的热稳定性更高,而且在电导率、循环寿命、低温性能等方面均有优势[16]。

但受限于生产工艺与产能,LiFSI成本过高,远超六氟磷酸锂。为控制成本,LiFSI在实际商用中仍更多的作为电解液添加剂使用,而非锂盐溶质。

信息来源:长江证券[16]

隔膜

锂电池隔膜是正负极之间的一层薄膜,在锂电池进行电解反应时,可用来分隔正极和负极防止发生短路。隔膜浸润在电解液中,表面有大量允许锂离子通过的微孔,微孔的材料、数量和厚度会影响锂离子穿过隔膜的速度,进而影响电池的放电倍率、循环寿命等指标。

聚烯烃是当前通用的锂电池隔膜材料, 可为锂电池隔膜提供良好的机械性和化学稳定性,进一步细分则有聚乙烯(PE)、聚丙烯(PP)、复合材料三大类。

隔膜材料的选择与正极材料有关,目前聚乙烯主要应用于三元锂电池,聚丙烯则主要应用于磷酸铁锂电池。

除了材料,制备工艺对隔膜的性能也有着一定影响。

当前锂电池隔膜的生产技术分为干法和湿法两大类。

干法又称为熔融拉伸法(MSCS),可进一步细分为单向拉伸和双向拉伸两种工艺。此技术路线的发展时间长,更加成熟,主要用于生产PP膜。此外,双向拉伸工艺由于成品性能不佳,只用于中低端电池,已不再是主流制备工艺。

干法工艺具有简单、成本低、环境友好的特点,但产品性能较差,更适用于小功率、低容量电池。而在上文提到过,磷酸铁锂电池恰好存在能量密度偏低的缺陷,故采用干法工艺的隔膜多用于这一技术路线。

湿法又称为热致相分离法(TIPS),与只对基膜进行拉伸的干法工艺不同,湿法会对基膜表面进行涂覆,以提高材料的热稳定性。相较于干法制备产品,湿法工艺的隔膜在性能上有着比较明显的优势,其厚度更薄,拉伸强度更理想,孔隙率更高,有着更为均匀的孔径和更高的横向收缩率。此外,湿法隔膜的穿刺强度更高,更有利于延长电池寿命,且更加适应高能量密度的锂电池发展方向,目前主要应用于三元电池。

不过与干法相比,湿法工艺相对复杂、成本高、易对环境造成污染。

当前隔膜材料的主要市场趋势十分确定。由于更加符合动力电池高能量密度的要求,可以延长电池循环寿命,且能增加电池大倍率放电能力,湿法工艺正在对干法形成快速替代。 数据显示,2017年湿法锂电池隔膜的市场份额首次超过干法隔膜,而仅一年后的2018年,市占率就进一步上升至了65%。

数据来源:头豹研究院[17]

三大封装技术

除了原材料,锂电池的封装技术对电池最终性能同样有重大影响。即使材料配方一致,不同的加工工艺所生产的成品,在安全性、能量密度以及循环寿命等方面也不相同。

当前,封装技术可分为三类:

方形电池,即方形的单体电池。该类型电池的电芯间隙较小,内部材料更加紧密,电池在高硬度的限制下不容易膨胀,安全性比较高。同时壳体采用了密度更小、重量更轻且强度更高的铝镁合金,进一步强化对内保护,相应的生产工艺却不复杂。但方形电池一致性较差,且由于可以根据需求做定制化生产,市场上型号繁多,工艺不统一。

一致性是指电池组中,单体电池的初期性能指标相近,如容量、温度特性、循环性等。若单体电池性能差异太大,在成组后会严重影响电池组的使用寿命。

圆形电池虽与方形电池同属硬壳封装路线,但尺寸更小,电芯一致性好,单体电芯的能量密度比较高,成组更加灵活,生产工艺成熟且成本低。缺陷在于整体性能一般,电池包中的电芯数量比较多,重量大,圆柱此种形态对空间的利用率也不好,导致能量密度较低。 软包电池的性能是三种路线中最好的,其尺寸灵活,能量密度高,重量轻。但机械强度不高,生产工艺也更加复杂,生产成本高,性价比一般。

从市占率看,目前方形电池凭借更高的性价比,大幅领先其他技术路线。 2019年,国内方形电池装机量为52.73GWh,同比增长 24.8%,占总装机量 84.5%,是年度唯一保持同比正增长的技术路线。

数据来源:国元证券[18]

除了三种成熟的封装技术外,锂电池目前还有新的CTP技术,并衍生出了“刀片电池”与“CTP电池”两种新产品,均为方形电池的升级形态。

CTP(Cell To Pack)技术,是指电芯直接成组,跳过了电池模组这一中间环节。这种技术一方面提升了电池包内的空间利用率,增加带电量;另一方面又减轻了重量,整个电池组的能量密度大幅提升。

当前以比亚迪为代表的的刀片电池,选择的是彻底取消模组的方案;宁德时代的CTP电池,则是走将小模组整合为大模组的路线。

此两种路线各有优劣,但均处于商业化早期,制造工艺与规模生产仍需提高,短时间内无法大规模替代传统技术。

图片来源:中信证券[19]

总结

正如开篇所讲,锂电池的产业链长且复杂,牵扯行业众多,无法用短短数千字描述清楚。本文选择覆盖最核心的四种材料与三种加工工艺,并没有涉及电池整包的相关工艺与材料。

总体上看,锂电池的未来发展方向清晰:要么提高能量密度,要么对现有产品进行成本优化。 无论是正极材料的磷酸铁锂与三元材料之争,或是隔膜工艺与电解液溶质的选择,均承袭于此。

这无疑是动力电池的好时代:下有消费者购买电动车的需求快速增长,上逢电动车成为国家重点项目,获得政策大力扶持。在政策与市场需求双向驱动之下,锂电池产业链内的企业创新意愿也很强烈,持续对现有生产工艺进行优化,新的技术突破亦时有发生。

新的工艺与新的材料带来性能更好的产品,更成熟的生产技术带来更加规模化的生产,进而降低产品价格,这是新技术商业化的基本路径。能率先突破的企业,自然就能先人一步占据市场,在新能源的时代占据一席之地。宁德时代用三元电池铸造的万亿神话,其它企业同样有机会复制。

对于消费者而言,事情就简单多了。能开上性能更强,安全性更高且更便宜的电动车,比什么都强。

References:

[1]国务院办公厅关于印发新能源汽车产业发展规划(2021—2035年)的通知.2020.11.02

[2]石瑜捷: MRI:2025年新能源汽车渗透率达20%,基础设施进一步完善——《新能源汽车发展规划(2021-2035年)》点评.我的钢铁网.2020.11.03

[3] 黄秀瑜:璞泰来(603659)深度报告:人造石墨负极材料龙头,新能源汽车机遇促增长.东莞证券

[4] 正略钧策:《材料化工行业2020年度蓝皮书》

[5] 李佩娟:深度解读!2021年中国锂电池行业产业链全景解析 价格持续下降利于新能源汽车发展.前瞻经济学人.2020.03.04

[6] 陈晓:新能源与汽车行业新能源锂电池系列报告之四:锂电正极高镍三元与磷酸铁锂两翼齐飞.华安证券

[7] 姚美娇: 磷酸铁锂电池冲锋,三元锂能否保住“王位.中国能源报.2021.5.12

[8] 王蔚祺:锂电行业深度系列三:正极材料,高镍与涨价齐驱,迈向增长新阶段.国信证券

[9] 鑫椤资讯:811电池“偷偷发育”?正极材料出货量占比超三成.搜狐.2021.04.19

[10] 产业信息网:2018-2019年上半年中国三元正极材料行业发展概况及市场竞争格局分析.2019.08.22

[11] 新汽车志:今夏自燃之王,6万Aion S车主终成811电池小白鼠?.网易.2020.09.10

[12] 龚斯闻,林煜:正极材料深度报告:三元路线主导,高镍化大势所趋.财通证券

[13] 李乐怡,陈夏琳:新能源汽车系列行业概览:2019年中国锂电池隔膜行业概览.头豹研究院

[14] 赵晓闯:锂电行业深度报告:行业迎增长拐点,关注产业链龙头.世纪证券

[15] 王蔚祺:锂电行业深度系列四:电解液,电解液涨势延续,龙头盈利双驱动.国信证券

[16] 马军,邬博华:电力设备新能源行业LiFSI:电解液产业链的下一个制高点.长江证券

[17] 王凌之,陈夏琳:新系列行业概览:2019年中国锂电池负极材料行业概览.头豹研究院

[18] 汪伟杰:新能源汽车行业系列二:动力电池,未来几何.国元证券

[19] 宋韶灵:新能源汽车动力电池行业投资策略:全球电动化浪潮,优质供应链受益.中信证券

相关问答

锂电池 上的s和p是什么意思

[回答]便携式电子产品以电池作为电源。随着便携式产品的迅猛发展,各种电池的用量大增,并且开发出许多新型电池。除大家较熟悉的高性能碱性电池、可充电的...

锂电安装钳工必备 知识 ?

锂电池安装钳工必备的知识包括以下几个方面:1.锂电池的基本知识:了解锂电池的工作原理、组成结构、电压、容量等基本参数,同时要熟悉锂电池的安全使用和存储...

关于锂电材料三角图形的解释-盖德问答-化工人互助问答社区

建议学习下三角相图相图里的一个点代表一种组分,也就是锰钴镍比例。过该点做三个边的平行线就能读出各自的含量谢谢!有没有相关资料或者关于这个...

无人机 锂电池 基本 知识 ?

锂电池是现在无人机最常用的电池之一。锂电池具有高能量密度、体积小、重量轻、自放电小、充电时间短、环保等特点,适用于飞行器等无线设备,因此成为无人机电...

锂电池的 负极最大可嵌入锂浓度的物理意义是什么?-盖德问答-...

朋友:看来你是真的刚入门,下面是我的一些理解,希望对你有些帮助,锂离子电极材料本来没有正负极之分,只不过对锂电位高的我们称之为正极,低的称之为...

华盛锂电普工待遇?

华盛锂电普工的待遇相对较为优厚,通常包括基本的社保福利和薪酬待遇,以及加班费、交通补贴、年终奖等额外福利。具体薪酬水平因地区、企业规模和个人经验等因...

锂电池 质检员考试题及答案..._质检员考试_帮考网

由于锂电池质检员考试的试题和答案是不断更新和变化的,因此无法提供具体的题目和答案。建议考生在备考过程中多阅读相关资料和标准,加强理论知识和...

锂电池 质检员考试题答案..._质检员考试_帮考网

由于没有具体的考试题目,无法提供准确的答案。一般来说,锂电池质检员考试题目会涉及锂电池的结构、工作原理、安全性能、质量检测方法等方面的知识...

跑外卖 锂电池 充一次电费多少电?

关注南城骑士,带你了解外卖行业的各种资讯和内幕。虽然没怎么测试过,但毕竟天天都在接触这方面,所以大致的预估,应该是在一度电左右。相比起铅酸电池来说,...

电动自行车配置 基础知识 ?

电动自行车的基础配置包括电机、电池、控制器和显示器等。电机是驱动力源,通常分为中置电机和后轮电机两种,后轮电机比中置电机更便于安装和维护。电池是电动...