锂电池4.3V 锂电池保护板使用方法及挑选的方法

小编 2024-10-06 聚合物锂电池 23 0

锂电池保护板使用方法及挑选的方法

大家都知道,我们使用的锂电池其实是由内部几个小的锂电池并联在一块所组成的。锂电池保护板是对锂电池组的充、放电保护;在充满电时能保证各单体电池之间的电压差异小于设定值,实现电池组各单体电池的均充,有效地改善了串联充电方式下的充电效果。我们使用的锂电保护板究竟是怎么工作,锂电老兵马工为你分享,关注锂电老兵,普通视角为你分享锂电故事。

锂电老兵马微信号

锂电池保护板的作用

成品锂电池组成主要有两大部分,锂电池芯和保护板,锂电池芯主要由正极板、隔膜、负极板、电解液组成;正极板、隔膜、负极板缠绕或层叠,包装,灌注电解液,封装后即制成电芯,锂电池保护板的作用很多人都不知道,锂电池保护板,顾名思义就是保护锂电池用的,锂电池保护板的作用是保护电池在使用过程不过放、不过充、不过流,还有就是输出短路保护。

锂电池(可充型)之所以需要保护,是由它本身特性决定的。由于锂电池本身的材料决定了它不能被过充、过放、过流、短路及超高温充放电,因此锂电池组件总会跟着一块精致的保护板和一片电流保险器出现。

三串保护板连接方法

锂电池保护板使用方法

锂电池保护板根据使用IC、电压等不同而电路及参数有所不同,下面以DW01配MOS管8205A进行讲解:

1.锂电池保护板其正常工作过程为 :当电芯电压在2.5V至4.3V之间时,DW01的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01的电压,故均处于导通状态,即两个电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。

2.保护板过放电保护控制原理 :当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。

此时电芯的B-与保护板的P-之间处于断开状态。即电芯的放电回路被切断,电芯将停止放电。保护板处于过放电状态并一直保持。等到保护板的P与P-间接上充电电压后,DW01经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。

单节保护板原理图

3.锂电池保护板过充电保护控制原理 :当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的充电回路被切断,电芯将停止充电。

保护板处于过充电状态并一直保持。等到保护板的P与P-间接上放电负载后,因此时虽然过充电控制开关管关闭,但其内部的二极管正方向与放电回路的方向相同,故放电回路可以进行放电,当电芯的电压被放到低于4.3V时,DW01停止过充电保护状态重新在第3脚输出高电压,使8205A内的过充电控制管导通,即电芯的B-与保护板P-又重新接上,电芯又能进行正常的充放电。

4.短路保护控制过程 :短路保护是过电流保护的一种极限形式,其控制过程及原理与过电流保护一样,短路只是在相当于在P+/P-间加上一个阻值小的电阻(约为0Ω)使保护板的负载电流瞬时达到10A以上,保护板立即进行过电流保护。

锂电保护板组装

锂电池保护板选购要点:(以铁锂3.2V电池说明)

为了保护锂电池组寿命,以铁锂电池来举例说明,建议任何时候电池充电电压都不要超过3.65v,就是锂电池保护板保护电压不高于3.65v,均衡电压建议3.4v-3.5v,电池放电保护电压一般2.2v以上就可以。

充电器建议最高电压为3.6*串数,自放电越大,均衡需要时间越长,自放电过大的电芯已经很难均衡,需要剔除。所以挑选锂电池保护板的时候,尽量挑选3.65v过压保护的,3.5v左右启动均衡的。锂电池保护板的内阻越低越好,越低越不发热。保护板限流大小是靠康铜丝取样电阻决定的,但持续电流能力是mos决定的。

锂电池保护板,其作用就是防止锂电池充电过充或过放而起到相应的保护作用的。有保护板就能很好的保护电池本身,没有的话,一是锂电池本身性能容易受损,二是有安全危险,这可不是开玩笑的哦。当然,不采用保护板的,因为内阻小了,使用时间可能会长一点点,价格也便宜点,但个人觉得,还是安全第一。

感谢关注锂电老兵马工,普通视角分享锂电故事,可添加马工微信一起交流分享!

三元体系电池高电压电解液的研究进展

【能源人都在看,点击右上角加'关注'】

高电压电解液的挑战

传统碳酸酯电解液电化学窗口较窄、一般低于4.3V,电压升高后,一方面会造成溶剂分解,更为重要的,溶剂会与高电压状态的正极发生副反应,致使三元材料中的过渡金属溶出,并产生大量气体,大幅降低电池的容量甚至安全性。

对于三元正极而言,Ni、Co、Mn的氧化态分别为+2、+3和+4价。在充电时,由于锂离子会从正极脱嵌,因此Ni将由+2价转变为+3价乃至+4价,同时正极会与电解质反应生成一层固体电解质界面(CEI层),

CEI层对正极会起到保护作用(与负极的SEI膜类似),阻碍正极与电解液的进一步反应,提高正极在脱锂条件下的稳定性。但CEI膜的形成,也会同时造成电池阻抗增加、倍率衰减、容量衰减、产生气体等问题。因此,通过优选电解液组分来形成最佳的正极CEI膜,就显得尤为重要。

CEI膜的成分很复杂,与正极、电解液和充电电势密切相关,并且在反复充放电过程中会不断发生变化。一般认为CEI膜成分含有酯链和醚链,并且会随着充放电进行而不断变化。

与化成时我们期待形成一层致密且稳定的SEI膜类似,我们也希望正极能与电解液形成一层稳定且不会显著增加阻抗的CEI膜,这样才能在尽量保证材料性能充分发挥的同时 ,提高电解质与正极在高电压条件下的稳定性。对电解质而言,可以通过以下改善,提高其高电压下的稳定性:

溶剂的改善

常规三元电解液的溶剂包含大量的碳酸酯基溶剂,如EC、DEC、DMC等,这些溶剂与石墨负极可以形成稳定的SEI膜,且拥有较高的离子导电性和离解能力。但是常规溶剂在高电压下的稳定性较差,因此急需研发出适合于高电压锂离子电池的电解液溶剂。目前研究较多的溶剂有下面几种:

砜类溶剂 :包括环状砜和线性砜。砜类溶剂具有高介电常数、宽电化学窗口的优势,但是多数砜基电解液的黏度很高,需要与其它具有低熔点和低黏度的溶剂混合使用才能有实际使用价值。例如TMS/DMS和TMS/DES的电解液体系。

腈类溶剂 :优势在于具有较高的燃点和闪点,表现出良好的热稳定性和高电压下的耐氧化性。但缺点在于毒性大、沸点较低,在低电势下很容易被还原,因此与石墨负极不相容,无法使用于常规的电池体系。

氟代碳酸酯 :由于氟是强吸电子原子,因此使用氟取代碳酸根和羧酸酯中的氢可以大幅提高其抗氧化能力,提高电解液的稳定性、导电性以及与石墨负极的兼容性。例如使用FEC/HFDEC为溶剂体系的电解液,可以采用高达4.6V的充电截止电压,并保证电池的库伦效率。

小结 :各种溶剂体系虽然优势明显,但短板也不容忽视,短期来看,三元高电压溶剂体系还会维持目前的EC、DEC、DMC不变。

锂 盐

目前商业上应用最广的锂盐是LiPF6,其拥有着综合最优的性能。但是痕量水的存在会与LiPF6发生反应生成HF造成电池气账,此外LiPF6的高温稳定性较差。所以替代锂盐的寻找从未停止。

单一锂盐 :包括双草酸硼酸锂(LiBOB)、二氟草酸硼酸锂(LiDFOB)、双氟磺酰亚胺锂(LiFSI)及双氟甲烷磺酰亚胺锂(LiTFSI)等。但是新型锂盐的成本往往显著高于LiPF6,并且有着各自的缺点。如BOB和DFOB的溶解性较差,FSI和TFSI在较高的纯度和电压下、对铝箔会有严重的腐蚀。

混合锂盐 :混合锂盐的优势在于改善了高电压下电池的电化学性能,提供了新型锂盐如TFSI在高电压下使用的可能性。例如将TFSI、FSI与LiPF6混合,可以有效降低前者对铝箔的腐蚀。

高浓锂盐 :提高锂盐浓度会增强正负离子与溶剂分子的相互作用,当锂盐浓度达到一定程度时,自由溶剂分子消失,与锂离子配位的溶剂分子显示出更强的氧化稳定性。但是高浓度锂盐的制约在于过高的成本和较低的离子电导率,并且会降低电解液的浸润性。因此1mol/L的左右的锂盐浓度才是最优的选择。

小结 :短期看没有哪一款锂盐可以挑战六氟磷酸锂的地位,但是将新型锂盐作为少量使用的添加剂,则可以显著改善电池的性能。

高电压电解液添加剂

除了溶剂和锂盐,添加剂也是电解液中的一个重要组成部分,虽然其添加量往往只有1%左右的质量分数,但是却可以显著提升电池某个方面的性能,因此是最为经济和易于实现工业化的方式。

添加剂的种类包含锂盐添加剂、含硼添加剂、含磷添加剂、含硫添加剂、碳酸酯添加剂。以锂盐添加剂LiBOB及LiDFOB为例,其与正极的成膜机理为添加剂的氧化脱离CO2并形成稳定的酰基自由基,自由基在氧化物-电解质界面处重组并生成二氟硼烷二聚体,该二氟硼烷二聚体与正极表面的氧形成强B—O键,从而使电极钝化并防止电解质氧化。

混合及全固态电解质

液态电解液溶剂为易燃的有机物,电池内部温度升高时,容易与正极分解产生的氧气产生燃烧,存在较大的安全隐患。但固态电解质消除了对电解液的需求,可在很宽的温度范围内保持稳定,提高了安全性。

全固态电解质包括固态聚合物、无机及其复合电解质。但其缺点也很明显:电解质与正负极间的固相接触界面阻抗较大、离子电导率低;充放电过程中,电极材料晶格发生各向异性变化,从而与电解质间界面应力增加,造成接触变差。以上问题严重阻碍了全固态电解质的应用。

通过将固态聚合物、无机及液态电解质的优点结合起来,开发出混合固态电解质,被认为是开发高性能电解质的可行方法。

总 结

为了解决电动汽车续航里程短的问题,提高三元正极的工作电压是一条必经之路。就电解质而言,目前商用的三元电解液依旧由1.1mol/L的LiPF6为锂盐,配以EC加DEC、DMC为溶剂。但该体系的缺点在于电压提高后便不再稳定,因此需要考虑从溶剂、锂盐、添加剂、新型电解质等方面进行改善。

溶剂方面,砜类与腈类溶剂与石墨负极的兼容性差,暂时不太可能完全取代碳酸酯类溶剂。相比之下将碳酸酯氟代对于高电压下电解液的整体性能发挥更加有利。但是氟代溶剂溶解锂盐的能力有限,需配以易于解离的锂盐或可作为共溶剂使用。

锂盐方面,因为LiPF6的综合性能优越,地位暂时难以撼动。若后续LiTFSI和LiFSI可以解决腐蚀铝箔的问题,则竞争力将有很大提升。目前最好的方式在于混合锂盐:以LiPF6为主,加入少量的LiTFSI、LiBOB为辅。

添加剂方面,由于某一款添加剂的较小添加量就可以带来电池某项性能的显著改善,因此复合型的添加剂必然是未来的发展方向,从结构方面进行优选组合将事半功倍并使添加剂的功能得到最大程度的发挥。

为了实现高电压下电池的安全性能,固态电解质是公认的解决方式,但是全固态电解质由于界面接触效果差、离子电导率低、电化学窗口窄等诸多问题,所以目前仍以固液混合为主。相比于氧化物、硫化物、聚合物等单一组分,无机固态电解质主体加上有机聚合物电解质界面可以兼顾高电导率和界面接触,是实现全固态电解质的一种方式。

免责声明:以上内容转载自电池中国,所发内容不代表本平台立场。

全国能源信息平台联系电话:010-65367702,邮箱:hz@people-energy.com.cn,地址:北京市朝阳区金台西路2号人民日报社

相关问答

为何充电的时候电压到了 4.3V 还多呢?不是 锂电池 充电超过4....

我的手机是锂离子电池的,为何充电的时候电压到了4.3V还多呢?不是锂电池充电超过4.2对电池会举报相机电池7人讨论9003次围观关注问题写回答讨论回答(7)...

锂电池 4.23伏是过充吗?

根据一般锂电池的标准电压范围来看,4.23伏是处于过充状态的。一般情况下,锂电池的标准电压范围为3.6伏至4.2伏。当电池电压超过4.2伏时,就属于过充状态,可能...

锂电池 可以充到 4.3v 吗?

正常充电电压到了3.8以上可以开机,4.2的话是可以冲到的不过到了4.2的时候电量大概在百分之60左右保护板的电压为4.3V所以是可以充到4.3V的

三元锂电标准电压?

锂电池组电压范围一般是3V-4.2V,锂电池组的电压是由电极电势决定的。电压也称作电势差或电位差,是衡量电荷在静电场中由于电势不同所产生的能量差的物理量。锂...

三元 锂电池 满电电压是4.2还是4.25-ZOL问答

三元锂电池的满电电压通常为4.2V。这种类型的电池由锂金属或锂合金以及过渡金属氧化物组成,具有较高的能量密度和较短的充电时间。与之相比,传统锂离子电池的...

锂电池 3.6v用电容放电到3v,如何操作?

1⃣️题中的3.6V一定是个手机电池吧!2⃣️你要用电容来得到3V,只有在3.6V交流电上才能完成此操作。3⃣️题中说到...锂电池3.6V用电容放电到3V,如何操作?1⃣...

锂电保护电压设置为多少合适?

您好,18650锂电池的上限和下限电压分别为4.2V和2.75V。18650锂电池单节标称电压一般为:3.6V或3.18650锂电池最小放电终止电压一般为:2.75V,低于这个电压...

我有个充电器输出电压4.5V,400mA。我想给 锂电池 充电,但是 锂电池 的充电电压必须是小于 4.3V ?

锂电池带保护板,不会过充电,可以用此充电器直接充电。锂电池不带保护板,也有的充电到4.5V的。要防过充电,可以加整流二极管降压,1N5817等可以,可能会充不满...

怎么判断4节 锂电池 保护板好坏?

判断4节锂电池保护板好坏的方法如下:用万用表测量电池保护板前端和后端的保护装置,如果电阻值为零,说明保护板是坏的。在锂电池组上找到保护板B-,用万用表...

锰酸锂过充电压设置为多少伏?

标准单体锰酸锂电池为3.7V,最高充电电压为4.3V,最低放电电压为2V标准单体磷酸铁锂电池为3.2V,最高充电电压为3.65V,最低放电电压为2V电池(Battery)指盛有电...