如何在10分钟内搞懂锂离子电池及组成?
【能源人都在看,点击右上角加“关注”】
锂离子电池工作原理充电过程中,在外加电场作用下,锂离子从电池内部由正极向负极传输,电流经由外电路从负极流向正极,内部保持电中性(电子同时经由外电路从正极流向负极)。放电过程则相反,锂离子与电子从负极回到正极中,外电路电流则从正极流向负极。除了嵌入式反应外,锂离子电池中的反应机制还包括:两相反应(Phase transition mechanism)、转换反应(Conversion reaction mechanism)、化学键反应(Reversible chemical bonding mechanism)、表面存储(Surface charging mechanism)、自由基反应(Organic free radical mechanism)、欠电势沉积(Underpotential deposition mechanism)、界面储存(Interfacial charging mechanism)等反应机制。
1
锂离子电池的组成锂离子电池主要由正极、负极、电解液、隔膜组成,此外电池内还包括粘结剂、导电炭黑、集流体、极耳、封装材料等组成部分。各主要组分有以下特点:
★ (1)能可逆脱嵌锂的活性材料为正负极;正极一般是氧化还原电位较高的过渡金属氧化物(LiMO2:M是Mn、Co、Ni中的一种或几种),负极是氧化还原电位较低的可嵌锂脱锂的活性材料,如石墨、Si、Sn合金等;
★ (2)电解液为锂电池正负极之间的传输媒介,一般为溶有锂盐的碳酸酯类有机溶剂,锂盐主要有 LiPF6、LiClO4等;
★ (3)隔膜是具有一定孔隙率且电子绝缘的微孔薄膜,如聚乙烯(PE)、聚丙烯(PP),隔膜的主要作用是分离电池正负极,避免正负极接触而发生短路,当电池内部由于短路温度升高到超过隔膜耐受温度时,常用的 PP/PE 会融化,封闭孔隙以阻止Li+通过,防止电池燃烧爆炸。
1
锂离子电池正极材料
锂离子电池的正极材料是二次锂电池的重要组成部分,它不仅作为电极材料参与电化学反应,还要作为锂离子源。在设计和选取锂离子电池正极材料时,要综合考虑比能量、循环性能、安全性、成本及其对环境的影响。
理想的锂离子电池正极材料应该满足以下条件:
①比容量大:要求正极材料有低的相对分子质量,且其宿主结构中能插入大量的Li+;
②工作电压高:要求体系放电反应的Gibbs自由能负值要大;
③充放电的高倍率性能好:要求电极材料内部和表面具有较高的扩散速率;
④安全性能好:要求材料具有较高的化学稳定性和热稳定性;
⑤容易制备,对环境友好,价格便宜。
锂离子电池正极材料一般为含锂的过渡金属氧化物和聚阴离子化合物。因为过渡金属往往有多种价态,可以保持锂离子嵌入和脱出过程的电中性;另嵌锂化合物具有相对于锂的较高的电动势,可以保证电池具有开路电压。一般来说相对于锂的电势,过渡金属氧化物大于过渡金属硫化物。
在过渡金属氧化物中,相对于锂的电势顺序为:3d过度金属氧化物>4d过度金属氧化物>5d过度金属氧化物;而在3d过度金属氧化物中,尤以含Co、Ni、Mn元素的锂金属氧化物为主。
目前商品化的锂电池正极材料普遍采用插锂化合物,如LiCoO2,其理论比容量274mA·h·g-1,实际比容量146mA·h·g-1左右。Li(NiCoMn)O2三元材料,其理论比容量与LiCoO2相近,但实际比容量根据组分略有差异。
LiMn2O4材料理论比容量148mA·h·g-1,实际比容量115mA·h·g-1;LiFePO4材料理论比容量170mA·h·g-1,实际比容量可达150mA·h·g-1左右。
如今,正极材料的主要发展思路是在LiCoO2、LiMnO2、LiFePO4等材料的基础上,发展相关的各类衍生材料,其中以三元材料NCM的应用较为广泛。
1
锂离子电池负极材料
负极材料作为锂离子电池的重要组成部分,理想的负极材料应满足以下几个条件:
①嵌脱Li反应具有低的氧化还原电位,使锂离子电池具有较高的输出电压;
②Li嵌入脱出的过程中,电极电位变化较小,以保证充放电时电压波动较小;
③嵌脱Li过程中的结构稳定性和化学稳定性较好,使电池具有较高的循环寿命和安全性;
④具有较高的可逆比容量;
⑤良好的锂离子和电子导电性,以获得较高的充放电倍率和低温充放电性能;
⑥嵌Li电位如果在1.2V以下,负极表面应能生成致密稳定的固体电解质膜(SEI),从而防止电解质在负极表面持续还原,不可逆消耗正极的Li;
⑦制备工艺简单,易于规模化,制造和使用成本低;
⑧资源丰富,环境友好。
根据负极与锂反应机理可把众多的负极材料分为3类:插入反应电极、合金反应电极和转换反应电极。其中插入反应电极主要指碳负极、TiO2基负极材料;合金反应电极具体是指锡或硅基的合金及化合物;转换反应电极指通过转换反应而对锂有活性的金属氧化物、金属硫化物、金属氢化物、金属氮化物、金属磷化物、金属氟化物等。
目前负极主要集中在碳负极、钛酸锂及硅基等合金类材料,采用传统碳负极基本满足消费电子、动力电池、储能电池的要求,采用钛酸锂为负极可满足电池高功率密度、长循环寿命的要求,有望进一步提高电池能量密度。
当前商品化的锂离子电池负极有两类。一类为碳材料,如天然石墨、人工合成石墨、中间相碳微球(MCMB)等。与天然石墨相比,MCMB电化学性能比较优越,主要原因是颗粒的外表面均为石墨结构的边缘面,反应活性均匀,易于形成稳定的SEI膜,有利于Li的嵌入脱嵌。
还有一类具有尖晶石结构的Li4Ti5O12负极材料,其理论比容量为175mA·h·g-1, 实际比容量可达160mA·h·g-1。虽然Li4Ti5O12工作电压较高,但是由于循环性能和倍率性能特别优异,相对于碳材料而言具有安全性方面的优势,因此这种材料在动力型和储能型锂离子电池方面有强烈的应用需求。但是易于电解液发生化学反应导致胀气引起电池鼓包。
下一代高容量的负极材料包括Si负极、Sn基合金。然而合金类负极材料面临高容量随高体积变化的问题,为解决体积膨胀带来的材料粉化问题,常采用合金与碳的复合材料,复合材料能在一定程度上提高现有锂离子电池的能量密度,但尚不及预期。
1
锂离子电池电解质
锂离子电池液体电解质一般由非水有机溶剂和电解质锂盐两部分组成。电解质的作用是电池内部正负极之间形成良好的离子导电通道。非水溶液电解质使用在锂电池体系时应该满足下述条件:
①电导率高,一般3×10-3~2×10-2S·cm-1;
②热稳定性好,在较宽的温度范围内不发生分解反应;
③电化学窗口宽,在0~4.5V范围内应是稳定的;
④化学稳定性高,不与正极、负极、集流体、隔膜、粘结剂等发生反应;
⑤对离子具有较好的溶剂化性能;
⑥没有毒性,蒸汽压低,使用安全;
⑦能够尽量促进电极可逆反应的进行,制备容易,成本低。
其中化学稳定性、安全性以及反应速率为主要因素。
锂电池有机电解液由高纯有机溶剂、电解质锂盐和必要添加剂组成。目前常用有机溶剂有碳酸乙烯酯,它具有比较高的分子对称性、较高的熔点、较高的离子电导率、较好的界面性质、能够形成稳定的SEI膜,解决了石墨负极的溶剂共嵌入问题。但必须与共溶剂一起添加使用。这些共溶剂主要包括碳酸丙烯酯和一些具有低粘度、低沸点、低介电常数的链状碳酸酯,如二甲基碳酸酯。此外其他链状碳酸酯也逐渐被应用于锂离子电池。
目前商业上应用的是LiPF6,LiPF6的单一性质并不是最优的,但其综合性能最有优势。LiPF6在常用有机溶剂中具有比较适中的离子迁移数、较好的抗氧化性能和良好的铝箔钝化能力,使其能与各种正负极材料匹配。但LiPF6的化学和热力学稳定性不够好,室温下便发生反应:LiPF6(s)→LiF(S)+PF5(g),高温下分界尤其严重。PF5是强路易斯酸容易进攻有机溶剂中氧原子,导致溶剂的开环聚合和醚键裂解。其次,LiPF6对水比较敏感,痕量水的存在就会导致其分解,且产物引起界面电阻增大,影响锂离子电池的循环寿命,腐蚀电极与集流体,严重影响电池电化学性能。
除锂盐和溶剂外,添加剂也是电解液不可或缺的一部分。添加剂的特点是用量少但是能显著改善电解液某一方面的性能。不同添加剂有不同的作用,按其功能可分为:阻燃添加剂、成膜添加剂,还有些添加剂可以提高电解液的电导率、提高电池循环效率等。目前研究的功能添加剂主要有提高电池安全性的阻燃添加剂、耐过充添加剂,针对高电压电池的高电压电解液等,也有针对胀气鼓包等问题研究的特殊添加剂。
1
锂离子电池隔膜
对锂离子电池隔膜的要求:在电解液中具有良好的化学稳定性及一定的机械强度,并能耐受电极活性物质的氧化/还原作用,耐受电解液的腐蚀;隔膜对电解质离子运动阻力要小,进而减小电池内阻,使电池在大电流放电时能量损耗减少,这就需要一定的孔径和孔隙率;应是电子的良好绝缘体,并能阻挡从电极上脱落物质微粒和枝晶的生长;热稳定性和自动关断保护性能好。当然还要材料来源丰富,价格低廉。
锂电池隔膜材料的主要性能要求还有:厚度均匀性、力学性能、透气性能、理化性能等四大性能指标。锂电池隔膜材料根据不同理化特性,可分为:织造膜、无纺布、微孔膜、复合膜、隔膜纸、碾压膜等几类。因聚烯类材料具有优异力学性能、化学稳定性和相对廉价的特点,至今商品化锂电池隔膜材料仍主要采用聚乙烯、聚丙烯等聚烯烃微孔薄膜。为提高动力电池安全性,在聚烯烃微孔薄膜基础上制备功能性复合隔膜,如陶瓷隔膜等。
参考资料:
刘芹. 高电压钴酸锂的改性及其储能特性的研究
谭铭. 高能量密度锂离子电池4.6V高电位钴酸锂正极材料研究
李卫. 动力锂离子电池正极材料锰酸锂的合成及性能研究
张杰男. 高电压钴酸锂的失效分析与改性研究
吴宇平. 锂离子电池——应用与实践
李泓. 锂离子电池基础科学问题
杜春雨. 锂离子电池高电压电解液
Zhou H H. Progress in studies of the electrode materials for Li ion batteries
王伟东. 锂离子电池三元材料工艺技术及生产应用
免责声明:以上内容转载自中国化学与物理电源行业协会,所发内容不代表本平台立场。
全国能源信息平台联系电话:010-65367827,邮箱:hz@people-energy.com.cn,地址:北京市朝阳区金台西路2号人民日报社
锂电池的发展史及趋势(包括3个阶段)
第一个阶段:一次锂电池1960—1970
1960-1970年代的石油危机迫使人们去寻找新的替代能源,同时军事、航空、医药等领域也对电源提出新的要求。当时的电池已不能满足高能量密度电源的需求。
由于在所有金属中,锂比重很小、电极电势极低,它是能量密度很大的金属,锂电池体系理论上能获得最大的能量密度,因此它顺理成章地进入了电池设计者的视野。
但是,锂金属在室温下与水反应,因此,如果要让锂金属应用在电池体系中,非水电解质的引入非常关键。
1.1 Li/CuCl2体系:首次尝试
1958年,Harris 提出采用有机电解质作为金属原电池的电解质。
1962年,在波士顿召开的电化学学会秋季会议上,来自美国军方Lockheed Missile和 Space Co.的Chilton Jr. 和 Cook提出“锂非水电解质体系”的设想。
Chilton 和 Cook 设计了一种新型的电池使用锂金属作为负极,Ag,Cu,Ni 等卤化物作为正极,低熔点金属盐LiC1-AlCl3 溶解在丙烯碳酸酯中作为电解液。虽然该电池存在的诸多问题使它停留在概念上,未能实现商品化,但Chilton 与 Cook 的工作开启了锂电池研究的序幕。
1.2 Li/(CF)n体系 :初见端倪
1970年,日本松下电器公司与美国军方几乎同时独立合成出新型正极材料——碳氟化物。松下电器成功制备了分子表达式为(CFx)n(0.5≤x≤1)的结晶碳氟化物,将它作为锂原电池正极。美国军方研究人员设计了(CxF)n(x=3.5-7.5)。无极锂盐+有机溶剂电化学体系,拟用于太空探索。
1973年,氟化碳锂原电池在松下电器实现量产,首次装置在渔船上。
氟化锂原电池发明是锂电池发展史上的大事,原因在于它是第一次将“嵌入化合物”引入到锂电池设计中。
第二个阶段:锂金属二次电池 1972—1984
锂原电池的成功激起了二次电池的研究热潮。学术界的目光开始集中在如何使该电池反应变得可逆这个问题上。当锂原电池由于其高能量密度迅速被应用到如手表、计算器以及可植入医学仪器等领域的时候,众多无极物与碱金属的反应显示出很好的可逆性。这些后来被确定为具有层状结构的化合物的发现,对锂二次电池的发展起到极为关键的作用。
2.1 嵌入化合物:锂二次电池成功的关键
60年代末,贝尔实验室的Broadhead等人,将碘或硫嵌入到二次硫化物的层间结构式发现,在放点深度低的情况下,反应具有良好的可逆性。
同时,斯坦福大学的Armand等人发现一系列富电子的分子与离子可以嵌入到层状二硫化合物的层间结构中,例如二硫化钽(TaS2),此外,他们还研究了碱金属嵌入石墨晶格中的反应,并指出石墨嵌碱金属的混合导体能够用在二次电池中。
1972年,在一次学术会议上,Steel与Armand等人提出“电化学嵌入”概念的理论基础。
2.2 第一块锂二次电池诞生
随着嵌入化合物化学研究的深入,在该类化合物中寻找具有应用价值的电极材料的目标逐渐清晰起来。
Exxon公司研发人员继续斯坦福大学团队的研究,他们让水合碱金属离子嵌入到二硫化钽TaS2中,在分析生成的化合物时,研究人员发现它非常稳定。这一切都预示着:在层状二次硫化物中选出具有应用价值的材料作为锂二次电池的正极将是非常有可能的。最终二硫化钛(TiS2)以其优良表现得到电池设计者的青睐。
1972年,Exxon设计了一种以TiS2为正极、锂金属为负极、LiClO4 /二恶茂烷为电解液的电池体系。实验表明,该电池的性能表现良好,深度循环接近1000次,每次循环损失低于0.05%。
充电过程中,由于金属锂电极表面凹凸不平,电沉积速率的差异造成不均匀沉积,导致树枝状锂晶体在负极生成。当枝晶生长到一定程度就会折断,产生“死锂”,造成锂的不可逆,使电池充放电实际容量降低。锂枝晶也有可能刺穿隔膜,将正极与负极链接起来,电池产生内短路。
70年代末,Exxon的研究人员开始对锂铝合金电极进行研究。
1977-1979年,Exxon推出扣式锂合金二次电池,用于手表和小型设备。1979年,Exxon在芝加哥的汽车电子展中展示了以TiS2为正极的大型的锂单电池体系,后来Exxon公司出于安全问题,未能将该锂二次电池体系实现商品化。
1983年,Peled等人提出固态电解质界面膜(简称SEI)模型。研究表明,这层薄膜的性质(电极与电解质之间的界面性质)直接影响到锂电池的可逆性与循环寿命。
20世纪80年代,研究人员开始针对“界面”进行一系列的改造,包括寻找新电解液,加入各种添加剂与净化剂,利用各种机械加工手段,通过改变电极表面物理性质来抑制锂枝晶的生长。
80年代末期,加拿大Moil能源公司研发的Li/MO2,锂金属二次电池推向市场,第一块商品化锂二次电池终于诞生。
2.3 锂二次电池研发的停顿
1989年,因为Li/Mo2二次电池发生起火事故,除少数公司外,大部分企业都退出金属锂二次电池的开发。锂金属二次电池研发基本停顿,关键原因还是没有从根本上解决安全问题。
第三个阶段:锂离子电池1980—1990
鉴于各种改良方案不奏效,锂金属二次电池研究停滞不前,研究人员选择了颠覆性方案。
第一种方案是抛弃锂金属,选择另一种嵌入化合物代替锂。这种概念的电池被形象地称为摇椅式电池(Rocking Chair Battery,简称RCB)。将这一概念产品化,花了足足十年的时间,最早到达成功彼岸的是日本索尼公司,他们把这项技术命名为Li-ion(锂离子技术)。
3.1 摇椅式电池概念
最早提出摇椅式电池概念的是Armand。79年代初, Armand就开始研究石墨嵌入化合物,1977年,他为嵌锂石墨化合物申请专利,1980年,他提出摇椅式电池概念,让锂二次电池的正负极均由嵌入化合物充当。
但是,要让概念变成现实,需要克服三个问题:一是找到合适的嵌锂正极材料,二是找到适用的嵌锂负极材料,三是找到可以在负极表面形成稳定界面的电解液。摇椅电池从概念变成现实足足花了10年的时间。
3.2 LiMO2 化合物研究进展
70年代末,Murphy的研究揭示类似 V6O13 的氧化物一样具有优越的电化学特性,为后来尖晶石类嵌入化合物的研究奠定了基础。
在持续的努力下,研究人员找到LiMO2(M代表Co,Ni,Mn)族化合物,他们具有与LiTiS2类似的斜方六面体结构,使锂离子易于在其中嵌入与脱嵌。
1980年,Mizushima和Goodenough就提出 LiCoO2 或 LixNiO2 可能的应用价值,但由于当时主流观点认为高工作电压对有有机电解质的稳定性没有好处,该工作没有得到足够的重视。随着碳酸酯类电解质的应用,LiCoO2首先成为商业锂离子电池的正极材料。
LixNiO2具有很高的比容量,成本也比LixCoO2低,但合成非常困难,容量衰减快,热稳定性低,未能在商用电池中广泛应用。
LixMnO2具有的理论容量与钴镍的相仿,但循环过程中LixMnO2结构逐渐改变,分解成两相,循环性差,无法作为电极材料直选。
尖晶石结构的LiMn2O4由于他的成本低廉,热稳定性高、耐过充性能好、高操作电压的四大特性,对他的改性多年以来一直都是研究的热点。缺点在于在高温下循环性能差。目前该材料是美国、日本等国研究动力锂电池的主要对象。
此时Goodenough正在英国牛津大学对含锂金属氧化物LiCoO2进行研究,LiCoO2材料的理论容量达到274mAh/g,但是并不是所有的Li+都能够可逆的脱出,当Li+脱出过多时会破坏结构的稳定性,引起材料结构的坍塌,Goodenough通过努力最终实现超过半数的Li可逆的脱出LiCoO2,使LiCoO2材料的可逆容量达到140mAh/g以上,这一成果最终催生了锂离子电池的诞生。
同期,正在旭化成工作的Akira Yoshino采用LiCoO2作为正极,石墨材料作为负极开发了最早的锂离子电池模型,这一技术最终被索尼公司采用,在1991年推出了全球首款商用锂离子电池。锂离子电池采用石墨材料作为负极,避免负极金属锂的出现,从而避免了锂枝晶的生成,因此极大的提高了可充电电池的安全性。
1997年Goodenough等人开创了橄榄石结构 LiFePO4 的工作。LiFePO4具有较稳定的氧化状态,安全性能好,高温性能好,原材料来源广泛、价值便宜等优点, LiFePO4被认为是极有可替代现有材料的新一代正极材料。缺点是导电率低,比容量偏低。
从此,凭借着高能量密度、高安全性的优势,锂离子电池开始一路狂奔,迅速将其他二次电池甩在身后,在短短的十几年的时间里锂离子电池已经彻底占领了消费电子市场,并扩展到了电动汽车领域,取得了辉煌的成就。
综观电池发展的历史,在商品化的可充电池中,锂离子电池的比能量最高,正因为锂离子电池的体积比能量和质量比能量高,可充且无污染,具备当前电池工业发展的三大特点,因此在发达国家中有较快的增长。随着新能源汽车的发展,锂电池也受到世人瞩目。
现阶段,锂离子电池已经成为电动汽车最重要的动力源,其发展经历了三代技术的发展(钴酸锂正极为第一代,锰酸锂和磷酸铁锂为第二代,三元技术为第三代)。随着正负极材料向着更高克容量的方向发展和安全性技术的日渐成熟、完善,更高能量密度的电芯技术正在从实验室走向产业化,应用到更多场景,为未来生活提供更便捷、清洁、环保、智能的生活。
纵观电池发展史, 目前新能源汽车的电池有:
铅酸电池, 是纯电动汽车最早使用的电池,其最大的优势是成本低。但其劣势也很突出,体积大、容量小使用寿命低等问题都使其不适于大规模用于新能源汽车。
镍氢电池, 其能量密度、充放电次数相比铅酸电池有不小的提升,并且安全性较高,制造工艺成熟。但其充电效率一般,无法使用高压快充。
锂电池, 正是现阶段新能源车的主流选择,其优势在于能量密度高、体积小、重量轻、充电效率高。但低温会影响其续航里程,不过温控元件也在研究发展中。
氢燃料电池, 是最理想的清洁能源,并且加氢效率高,达到加氢5分钟行驶超过600公里,但氢燃料电池之所以没有广泛推广,是因为氢气的获取技术落后、成本太高。
固态锂电池, 采用的是固态电解质,其能力密度远超现在的主流的锂电池,续航里程、充电效率更高,最理想化的充电速度可达到1分钟增加800公里,但这一技术目前离我们还很远,预计要到2030年才能在新能源车领域广泛普及。
石墨烯电池, 和氢燃料电池一样能做到零排放,但同样的其获取难度大,成本高。
固态锂电池和石墨烯电池代表着未来电池的方向和趋势。
相关问答
锂电有几种电芯?锂电有2种电芯根据外部材料,锂电池通常分为两类:锂金属电池通常使用二氧化锰作为正极材料,金属锂或其合金金属作为负极材料,以及非水电解质溶液。锂离子电池...
锂电ETF有哪些?-基金知识问答-我爱卡[回答]锂电ETF包括新能源电池指数ETF和CS电池指数ETF两大类:1、CS电池指数ETF包括电池基金和电池ETF;2、新能源电池指数ETF包括电池ETF、电池ETF基金、锂...
锂电池 分为哪几种?锂电池大致可分为两类:锂金属电池和锂离子电池。锂离子电池不含有金属态的锂,并且是可以充电的。可充电电池的第五代产品锂金属电池在1996年诞生,其安全性、比...
锂电池 组的寿命如何?锂电池的使用寿命都只在两到三年,锂电池一般能够充放300-500次。锂金属电池一般是使用二氧化锰为正极材料、金属锂或其合金金属为负极材料、使用非水电解质溶...
5个 锂电池 为什么叫21v?五节充满电的锂电池的端电压是21V。因为每节锂电池的额定电压是3.6V,每节锂电池的满电电压是4.2V,4.2V×5=21V。这就是五个锂电池串联起来的电压为什...
一串锂电多少个 电池 ?四个,一串锂电指的是一组锂电池,一组锂电池包括四个电池组成,一组电池一块电池的电压为12伏,四块电池组成,电池组经过串联,电压可达到48伏,在日常生活使用...
宁德时代 锂电池有 几个品牌?有4个品牌。宁德时代是一家知名的锂电池制造企业,其旗下有多个品牌的锂电池产品。以下是宁德时代的主要品牌和产品分类:1.CATL:汽车动力电池,包括NMC、LFP...
锂电池 充电器后极有几个可控硅?锂电池充电器后极的可控硅数量并不是一个固定的值,它取决于充电器的设计、功率、功能需求等多个因素。因此,无法直接给出一个确切的数字。可控硅在充电器中扮...
电动车的 锂电池 组一般由几个 锂电池 组成?单个的锂电池电压是3.6-3.7伏,容量1-2安,要10-14个串联为一族,再将多族并联,如5-8族,---根据所需电压及容量(安时)决定.目前电动车用锂电池处在起步阶段,性价...
锂离子 电池 是否属于 原电池 ?-盖德问答-化工人互助问答社区你把几个不同的概念混一块了。锂电池可以是原电池也可以是可充电池,具体看正极化学。比如现在正火的锂硫就是可充电池。但商业化的锂电池(如锂二氧...