固态储氢是未来高密度储存和氢能安全利用的发展方向
【高质量能源内容,点击右上角加'关注'】
装上2个小巧的氢气罐,电动自行车就可以行驶120公里;氢气用完也无须担心,街头巷尾的便利店就能购买更换;氢气罐即使破损也没有危险,罐子里倒出来的全是合金粉末……
这可不是什么科幻片里的场景,而是江苏某企业在2021第二十届中国北方国际自行车电动车展览上,展示的两款采用氢能源作为发电系统的样车。
近几年来,以固态储氢为能源供应的大巴车、卡车、冷藏车、备用电源等在我国相继问世。虽然只是试验示范项目,但还是在氢能源圈内引发了极大的关注。
固态储氢改变氢气高密度储存和安全应用两个难题,究竟是如何实现的?氢气的储运难题一旦获得解决,氢能源将在哪些领域发挥作用?带着这些问题,记者前采访了江苏省产业技术研究院集萃先进能源材料与应用技术研究所所长周少雄博士。
存储和运输问题影响了氢能利用
化学元素氢(H),在元素周期表中位列第一,是所有原子中最小的。
但这个无色无味的“小家伙”却是宇宙中最常见的元素,氢及其同位素占到了太阳总质量的84%,宇宙质量的75%都是氢。
“我们现在还生活在碳时代,但是在未来,氢能将是举足轻重的能源。”周少雄告诉记者,氢资源丰富,可以由水制取,氢供给燃料电池的产物还是水,不仅是世界上最干净的能源,还能实现能源物质循环利用、可持续发展。
当前,我国正面临着能源安全和碳排放两大挑战,在碳中和、碳达峰的目标下,必须调整当前过度依赖化石能源的能源结构,而将氢能纳入整个能源体系中,有助于改善我国的高碳能源结构,保障能源安全。
但是,从人类认识到氢气可以燃烧至今,已经过去200多年,氢能的高效利用仍然进展缓慢。
“氢能的利用,涉及制氢、储运、应用3个环节,其中高密度安全储运氢是主要的瓶颈问题。”周少雄说,氢在通常条件下以气态形式存在, 且易燃、易爆、易扩散,这就给氢的储存和运输带来了很大的困难。
目前,氢气的储运主要分为气态、液态和固态3种方式。
气态储氢较为常见,可分为低压和高压两种。过去,街头巷尾卖气球的小贩,会载着一个大钢瓶,这就是低压储氢罐。而高压气态储氢最高气压可达70兆帕,目前我国常见的高压储氢气压也达到35兆帕,这就对压力容器提出了极高要求,目前高压储氢罐采用碳纤维制造,成本极高且要消耗较大的能源进行压缩。
氢气在一定的低温下,会以液态形式存在。因此,可以将氢气压缩、冷却实现液态储存。常温、常压下液氢的密度为气态氢的845倍,但低温液态储氢不经济。氢气液化要消耗较大的冷却能量,而且必须使用超低温用的特殊容器,目前仅在储存空间有限的场合使用,如火箭发动机等。
与化石能源或电力等其他非化石能源相比,氢能由于尚未很好地解决储运问题,所以一直处在叫好不叫座的尴尬境地。因此,开发新型高效的储氢材料、安全的储氢技术对氢能的开发利用至关重要。
含镁固态储氢系统成本接近锂电池
“固态储氢相对于高压气态和液态储氢,具有体积储氢密度高、工作压力低、安全性能好等优势。”周少雄介绍,固态储氢是未来高密度储存和安全氢能利用的发展方向。
固态储存需要用到储氢材料,目前技术较为成熟的储氢材料主要是金属合金。
储氢合金一般由两部分组成,一部分为吸氢元素或与氢有很强亲和力的元素,它控制着储氢量的多少,是组成储氢合金的关键元素,主要包括钛、镁等;另一部分是吸氢量小或根本不吸氢的元素,常见的有铁、镍等。
这些合金材料与氢气在低温的条件下发生化学反应,氢气在其表面分解为氢原子。合金材料内部有大量细微的晶格,氢原子扩散进入到晶格内部空隙中,形成金属氢化物。
想要把氢原子“释放”出来也很简单,只需施加一定热量,储氢材料就可以析出氢气。
周少雄告诉记者,目前他们开发的低温固态储氢材料可以存储其体积上百倍的氢气,因而其储氢密度比液氢还高。这些合金材料性能非常稳定,不会燃烧爆炸,可逆性好,重复使用不低于5000次。
“以我们开发的一种新型储氢材料为例,主要成分是镁和稀土元素镧、铈等,在炉中熔化冶炼,冷却成型,再破碎成粉末就可以了。”周少雄说,镁是自然界普遍存在的一种元素,镧、铈在稀土元素中储量丰富,因此综合成本已逼近锂电池。
近年来,世界各国在固态储氢应用和新型储氢材料的研发上取得了诸多进展,成熟的储氢材料已在热电联供、储能、车载燃料电池氢源系统等多个领域得到应用,德国一家公司甚至将固态储氢系统用于燃料电池潜艇中。
据周少雄介绍,他们最新研制的含镁储氢材料,储存容量可达每立方米110千克,远超美国能源局提出的储氢“终极目标”,但是制约其应用的是放氢温度过高,需要达到250℃以上。目前,科学家正通过各种方法来调控其热力学、动力学和循环寿命性能,希望可以早日实现商用。
氢气变身“固态油箱”或改变未来能源格局
日本丰田、韩国现代等企业投入巨资、耗时数十年研发氢能源汽车,但受制于加氢站建设的瓶颈,市场推广并不顺利。
“由于氢能储运问题没有解决,燃料电池成本较高,所以氢能源汽车还处在政府补贴、示范运行的阶段。”周少雄说,当固态储氢材料得到发展后,氢能利用将会有极大地改变。
比如,将固态储氢装置与燃料电池一体化集成,可充分利用燃料电池余热,吸热放氢,降低系统热能消耗,使得整个燃料电池动力系统的能源效率得以提高。
“目前,我们已建成国内唯一一条年产800吨储氢材料的生产线,并与九号公司、永安行等企业开展合作,推出固态储氢动力系统的摩托车、电动自行车等。”周少雄告诉记者,低温固态储氢材料技术成熟,成本可控,整套装置全部实现国产化,无需政府补贴也可以实现商业化应用。
周少雄介绍,他们开发的以固态储氢为氢源的百瓦级氢燃料电池发电系统,只需55克氢气就能驱动自行车行驶80公里,而这55克氢气就储存在一个普通矿泉水瓶大小的罐子里,储氢压力仅相当于普通气球。
周少雄大胆预言:“固态储氢罐可以做成像干电池一样的产品,未来可在便利店或超市随处购买,也可以将使用完的氢能源空瓶放置存储箱,由快递员每日更换。”
未来,解决了储运难题,氢能的应用不仅是备受关注的燃料电池汽车,还包括氢能发电、工业应用及建筑应用等,不仅可以作为建筑热电联供电源、微网的可靠电源与移动基站的备用电源,还能够与数字化技术结合,让以固态储氢为氢源的氢燃料电池动力系统在无人驾驶、军用单兵、深海装备等诸多领域发挥重要作用。
*凡本网注明来源为“中国能源报/中国能源网"”的所有文字、图片和音视频资料,版权属于中国能源报社所有,未经授权,不得转载;凡本网注明来源非“中国能源报/中国能源网”的作品,版权归原创者所有,并不代表本网立场和观点,如有侵权,请联系删除。
固态储氢新突破,但它让我再度确定,电动车优势依旧很大
那一天,编辑群里,夏老师发了个链接,“这技术有点意思,谁来研究研究?”于是就有了今天这篇讲堂。
POWERPASTE,夏老师口中有意思的技术,来自德国弗劳恩霍夫制造技术与先进材料研究所(Fraunhofer IFAM)的研究者们研发了这种长得像牙膏的糊状物。他们将氢气和镁放在350 °C左右的高温和五到六倍的大气压下发生反应,形成氢化镁。再添加酯类和金属盐,最终合成一种粘稠的灰色糊状物,就是POWERPASTE。
这种物质的主要功能是储氢,它可以在常温常压下储存氢气。并且可以与水反应,释放氢气。其储氢能力相当强,储氢质量密度远高于700Bar的高压气态储氢罐。和锂电池相比,同等质量下,POWERPASTE储存的氢气能量相当于当前锂电池能量密度的10倍。
而且它在250℃的高温下完全稳定,弗劳恩霍夫的研究团队表示,POWERPASTE可用于大型无人机,给户外电器供电,当然也可以作为汽车的增程器。对,POWERPASTE就是燃料电池车的“油箱”,得益于其较高的能量密度,POWERPASTE提供的续航能力甚至可以超过汽油。
更关键的是,该团队表示,由于这种糊状物是流体,可以装在罐子或者盒子里,因此可以通过“相对便宜的设备”,利用标准的灌装线来灌制,储运条件也很便宜。
是不是一项很有趣的技术?看上去美好,但就像电动车界盛传的固态电池一样,这种固态镁基储氢金属,距离大规模量产也还有相当远的距离。这期讲堂就来看看燃料电池车的储氢系统。
★ 燃料电池车还需要“油箱”
燃料电池车虽然是电驱动的,没有发动机只有电机,但它的结构和燃油车更像,燃料电池需要氢气来发电,所以需要“油箱”——一套储氢装置来为他提供氢气。燃料电池将氢气和空气在内部电化学反应之后产生电能供给电机驱动车辆。
而区别于油箱的是,这套储氢装置技术含量相当高。和纯电动车受困于锂电池能量密度和充电时间一样,燃料电池车同样面临着能量密度的困扰。
因为氢气密度实在太小,1kg的氢气在常温常压下有差不多11立方米那么大,不可能放到车上应用,因此,必须用各种技术手段提高氢气储存的密度。
目前,储氢装置大致可以分为三类,第一类是高压气态储氢。使用的储氢瓶主要分为四种:纯钢制金属瓶(I型)、钢质内胆纤维环向缠绕瓶(II型)、铝内胆纤维全缠绕瓶(III型)和塑料内胆纤维缠绕瓶(IV型)。
高压储氢的优点是储存耗能低,成本较低,充放气速度快,常温下可以利用减压阀直接调控氢气的释放速度应对汽车在行驶中不同的工况需求。
明显,对于高压储氢,压力越大,单位体积储氢越多。目前行业前沿的是700Bar高压IV型储氢瓶,这一压力差不多相当于700米深海底的压力,作为对比轮胎充气压力只有2.5Bar,一般潜水艇的最大潜深只有300米。因此高压气态储氢对于罐体材质和密封有着较高的要求。
比如Mirai的储氢罐有四层结构,铝合金制成罐体,内部衬塑料内胆,外面包裹碳纤维强化塑料(CFPR)保护层,保护层外边还有玻璃纤维减震层。装有5kg氢气的氢气罐本身就会重达100多千克,储氢质量百分比仅有5%左右。体积密度同样不容乐观。
再引入一个专有名词,氢脆。氢脆是指氢气会在高温高压(300℃和30MPa)下,会渗透入金属材料,引起金属力学性能下降、诱发裂纹或产生滞后断裂。目前的氢瓶都有这种风险,使用寿命有限。
而且要为这种高压氢罐充氢,就意味着需要更高压的加氢装置,以及与之配套的供应运输体系……
虽然有着各种各样的缺点,但这套技术还是目前最为成熟,要求、成本相对最低储氢方案,现在所有的燃料电池车,丰田的Mirai、现代的NEXO等等都是采用了这种方案。
第二种是液化储氢。液氢的密度是常温常压中气态氢的845倍。但是氢气不像氮气,二氧化碳,可以通过加压实现液化,氢气液化的临界温度低至-234摄氏度,高于临界温度再高的压力都无法将氢气液化。这就直接否决了车上直接使用液氢储存的可能。
不过液氢倒是在纯度以及长距离大规模运输方面有较好的经济效应,车上用不了,但加氢站倒是有可能用得上。
第三种是固态储氢。
和锂电池在向固态电池发展一样,储氢技术也在向固态储氢发展。固态储氢还可以继续细分,一种是通过活性炭、碳纳米管、碳纳米纤维碳基材料进行物理性质的吸附氢气。以及金属有机框架物(MOFs)、共价有机骨架(COFs)这种具有微孔网格的材料捕捉储存氢气,以上这些材料目前还在实验室研究阶段。
一种COF材料TpPa-1
还有一种是利用金属氢化物储氢。金属氢化物储氢最大的优势在于体积密度相当高,单位体积的金属可以储存常温常压下近千体积的氢气,体积密度甚至优于液氢。
POWERPASTE就是用的这种方式。金属储氢的原理有些类似氢脆现象,氢气在一定条件下渗透进入金属内部,与金属发生反应生成金属氢化物,以原子状态储存于金属结晶点内。这个过程是可逆的,从而实现了氢气的吸、放。反应式如下:
式中,M代表金属元素。
金属储氢已经有了相当长的研究史,我们常用的镍氢充电电池就是典型的金属氢化物应用。
氢气与多数金属都能够发生化合反应,意味着大部分金属都有储氢能力。但金属储氢技术为了实现吸放氢的可控和可逆性,往往需要多种金属组成合金,一部分是吸氢能力强的金属(A类)如Mg、Ti、Zr、Ca、Re等,另一部分是吸氢能力弱的金属(B类)如Fe、Co、Ni、Cr等,调节反应生成热与分解压力。
几十年来,已经发展出多种合金,综合下来吸放氢条件、体积密度、质量密度、成本等合适工业生产的数量不多,主要有:镁系、镧镍稀土系、钛系、锆系。
其中以分子量较轻的金属镁作为基础的镁系合金为首。镁系合金具有较高的储氢质量和体积密度,而且镁储量较大,成本低。但是镁系储氢合金吸放氢条件较为苛刻,如POWERPASTE的报道中描述的,需要在350 °C左右的高温和五到六倍的大气压下发生反应,形成氢化镁。
另外,POWERPASTE产物在250℃高温下也能稳定同样也代表了产物活化条件高,想要在车载条件下释放氢气较为困难。
但是,体积上得天独厚的优势仍然使金属储氢成为一个热门发展趋势,尤其是对于燃料电池车。有朝一日,燃料电池车只需要到加氢站去换装有储氢合金的盒子就能完成补能,换下来的盒子内的储氢合金经过处理,重新补氢灌装就可以重新销售。这种充满想象力的前景的确令人向往。
★ 储能技术突破之后,燃料电池车能后来居上吗?
POWERPASTE的描述中还有一句:“这种浆料令人印象深刻的能量密度部分来自于它所释放的氢气有一半来自于它所反应的水”,这应该指的是活泼金属氢化物可以与水发生反应:
或者干脆就是活泼金属与水反应:
听上去是不是很熟悉?哦~~是庞青年的“水氢发动机”。他用的是铝和水进行反应获得氢气。只是铝制氢存在许多挑战,比如需要清除反应产物,防止覆盖在铝表面阻止反应持续;比如反应之后的产物氢氧化铝如果不加处理,也是一种浆状物,具有腐蚀性和毒性,回收再生价值很低,从而使铝几乎变成一次性消耗品;比如铝制氢气成本较高,每千克铝价格15元左右,制取1千克氢气大约需要消耗9kg铝,如果铝没有便宜的回收再生方法,没算制取装置成本的情况下,每千克氢气制取材料成本就需要135元,而每千克氢气大约可以支持车辆行驶100公里左右,算下来每公里成本远高于汽油车。
用铝制氢的经济性甚至不如电解水制氢。而电解水制氢的经济性还不如直接充电,这……
氢气本身的制备成本,制备氢气过程中的二氧化碳排放同样需要被量化。目前的工业制氢方式如煤制氢、天然气制氢、甲醇制氢、焦炉煤气制氢、工业副产物制氢都会产生二氧化碳,而利用可再生能源比如风力、潮汐能最简单的方式是发电,用可再生能源发的电来制氢,再用氢发电驱动车辆是不是有些曲折?
这是一笔经济账,不仅铝制氢要算,气罐储氢要算,POWERPASTE这种储氢金属更要算。我理解山顶水库的存在必要性。氢气如果能够解决怎么来和怎么去的问题,作为中间载体很可能比电池更“美好”。
而弗劳恩霍夫的研究团队肯定在一定程度上解决了金属储氢吸放氢方面的条件与代价。让储氢与运输变得相对更加便宜和便捷。相对。
仅就目前看来,电池仍然处于压倒性的优势。而燃料电池技术的确有相当广阔的发展潜力,所以燃料电池在国家规划中仍有着一席之地,并且政策以商业用车为中心开辟了一块实验田。
决定未来新能源形态的必然是制造、储运、回收全生命周期成本,以及碳排放,甚至使用便利性全部糅合起来一本经济账。
只是现在有一个现象很奇怪,许多人看不上电动车,认为它只是一种过渡产品,而却将氢燃料电池车作为未来新能源的终极形态。因为燃料电池还有些遥远,而电动车已经近在眼前。
这篇文章并不打算为电动车站台,只是想说明,两者并没有孰高孰低。电池和氢能都是后化石燃料时代,电能的载体,两者只是路线不同,没有高下之分,但先被干死的只会是燃油车。
参考资料:李璐伶, 樊栓狮, 陈秋雄,等. 储氢技术研究现状及展望[J]. 储能科学与技术, 2018, 7(4): 586-594.范士锋. 金属储氢材料研究进展[J]. 化学推进剂与高分子材料,2010,8(2): 15-19Teng He, Pradip Pachfule, Hui Wu, et al. Hydrogen carriers[J]. Nature Reviews Materials,2016Kai Fu, Jun Chen, Rui Xiao,et al. Synergism induced exceptional capacity and complete reversibility in Mg–Y thin films: enabling next generation metal hydride electrodes[J]. Energy & Environmental Science. 2018,11: 1563-1570
本文作者为踢车帮 Route64
相关问答
化学 储氢 反应式书写?反应Li3N+2H2=LiNH2+2LiH中,锂元素、N元素化合价不变,氢气化合价由0变成+1价的LiNH2,化合价升高被氧化,所以氧化产物为LiNH2;该反应中,反应掉2mol氢气,同...
__.(2)金属锂氢化物是具有良好发展前景的 储氢 材料.①LiH中...[最佳回答](1)Cl原子的核外电子排布式为1s22s22p63s23p5,有三层,离原子核越远的电子层其能量越高;该原子第三层即M层中含有该能层有1个s轨道、3个p轨道、5个d...
ab5型 储氢 合金的代表材料?钛基储氢合金是一种非常重要的储氢材料,其主要特点是能够在相对低的温度下实现高容量的氢储存。此外,钛基储氢合金还...AB5型储氢合金的代表材料是钛基储氢合...
...用来制造高能量 电池 .已知锂的金属性介于钠和镁之间,_作业帮[最佳回答](1)锂有2个电子层,最外层1个电子,在周期表中的位置:第二周期第ⅠA族;故答案为:第二周期第ⅠA族;(2)锂性质活泼,用电解熔融氯化锂的方法制取,故选:A;...
氢燃料和 锂电池 到底谁是新能源未来发展方向?氢燃料和锂电池都是新能源技术的代表,它们各自有着优缺点。氢燃料电池具有高能量密度、环保、快速加注等特点,在重型车辆、船舶、飞机等领域有着广阔的应用前...
亚氨基锂(Li2NH)是一种良好的固体 储氢 材料,其 储氢 原理可...[最佳回答]DA.错Li2NH中N的化合价为-3价B错,此法储氢是化学变化,钢瓶储氢是物理变化,原理不同C错LiH中的阳离子是Li+,阴离子是H-,此时,二者核外电...
亚氨基金属锂(Li2NH)是一种 储氢 容量大、安全性好的固体 储氢 ...[最佳回答]A.Li2NH中,Li、H元素的化合价均为+1价,由化合物中正负化合价的代数和为0,则N的化合价是-3,故A错误;B.氢气中H元素的化合价既升高又降低,则该反应中H...
亚氨基金属锂(Li2NH)是一种 储氢 容量大、安全性好的固体 储氢 ...[最佳回答]A.Li2NH中,Li、H元素的化合价均为+1价,由化合物中正负化合价的代数和为0,则N的化合价是-3,故A错误;B.氢气中H元素的化合价既升高又降低,则该反应中H...
开发新型 储氢 材料是氢能利用的重要研究方向.(1)Ti(BH4)3是一...[最佳回答](1)①基态Ti3+的核外电子排布式为1s22s22p63s23p63d1,其未成对电子数是1,故答案为:1;②Li+和BH-4之间存在离子键,硼原子和氢原子之间存在共价键、配...
锂与氮气反应?6Li+N2===2NLi3可逆反应,加催化剂,加热,另外也可以,6Li+N2(点燃)=2Li3N。2Li3N是氮和锂反应所形成的产物,也是唯一稳定存在的碱金属氮化物。氮...