锂电池安全性检测 锂电池安全性能检测常见标准!

小编 2024-12-28 资讯中心 23 0

锂电池安全性能检测常见标准!

作者:小法 来源:阿尔法检验

随着消费者对锂离子电池电性能及安全性要求的日益提升,各电池制造商以及各国主管部门、行业协会等有必要对锂离子电池安全性能的检测的重视,提高锂离子电池安全性能检测水平是大趋所势。

什么是电池?

通过电化学反应将电极材料的化学能直接转化为电能的系统。

1800年,意大利——伏特(Volt)发明了人类历史上第一套电池装置,化时代意义!

在该装置中,用浸泡在碱溶液中的布隔开两种金属的堆积片,再以导线连接两端——产生电流。 这是我们今天所认识的电池的最初形式。

电池分为三大类:

1化学电池

化一次电池、二次电池(铅酸电池、镍铬电池、镍氢电池、锂离子电池)、燃料电池

2物理电池

太阳能电池、双层电气电容、热电池

3生物电池

酶解电池、微生物电池

锂电池(Lithium Battery,简写成LB)

锂一次电池(又称锂原电池,Primary LB)

锂二次电池(又称锂可充电电池,Rechargeable LB)

为什么选择金属锂做电池的电极?

锂是自然界最轻的金属元素(0.53gxcm-3)具有较低的电极

电位(-3.045V vs.SHE)高的理论比容量3860 mA.h/g。

SHE——标准氢电极 Standard hydrogen electrode

金属锂在所有金属中最轻、氧化还原电位最低、重量能量密度最大,以锂为负极组成的电池具有电压高和能量密度大等特点。

由于安全问题而发生锂离子电池产品召回的案例日益增多。Li+的活性和高能量密度的特性,会给锂离子电池安全性带来较大的问题。目前,对锂离子电池的安全性能,尤其是一些潜在的微小结构缺陷所带来的安全隐患的筛查,检验方法和标准落后于锂离子电池技术的发展,评价方法和评价体系尚未适应锂离子电池安全性能评估的要求,那么锂电池安全性能检测常见标准具体有哪些呢?

锂电池测试常见标准:

锂电池自从面世以来,就以其卓越的性能迅速成为电池领域的佼佼者,但是随着其应用范围的逐渐扩大以及单个电池的体积能量密度越来越高,容量越来越大,锂电池的安全性也越来越被人们所关注。

将这些主要锂电池标准分别从不同的角度考察了锂电池的安全性和电性能,现将分类如下。从表上可以看出,目前锂电池各种标准主要从三个角度考察锂电池的安全及电性能:

1.电池使用安全性能

2.环境适应性

3.电性能

不同标准对电池的检测各有侧重:

IEC61960主要侧重于锂电池的电性能测试;

IEC62133和日本JISC8714要求侧重于产品使用安全和环境适应性安全;

GB/T18287不仅包含了部分安全检测项目,还涵盖了性能测试;

UL2054和UL1642则全面考察电芯和电池在各种使用环境下,包括故障条件、重压条件、燃烧条件下的安全性。

电池安全性能检测标准简介

目前,应用得较为广泛的国际标准是国际电工委员会(IEC)的锂离子电池标准。根据各自的需求,国际航空运输协会(IATA)、联合国危险货物运输专家委员会及国际民用航空组织(ICAO)等机构,也制定了相关的锂离子电池运输安全标准,并得到广泛应用。此外,一些国家及组织,如美国保险商实验室(UL)、美国电气及电子工程师学会(IEEE)和日本国家标准局(JIS)制定的关于锂离子电池的安全标准,也有广泛的影响。这些标准的检测项目相似,但是测试的条件有所不同。

应用较多、影响范围较广泛的国际标准有4个。联合国《联合国危险物品运输试验和标准手册》(UN38.3)

和IEC62281:2012《运输中锂原电池和电池组及锂蓄电池和电池组的安全》均侧重于锂离子电池在运输中的安全测试和安全要求,主要针对锂离子电池在运输过程中的外部环境及机械振动进行模拟,试验项目包括高度模拟、温度试验、振动、冲击、外短路、撞击、过度充电和强制放电等8项,要求电池在测试过程中,应保证包装不脱落、不变形、无质量损失、不漏液、不泄放、不短路、不破裂、不爆炸且不着火。

UL1642:2009《锂电池》适用于在产品中作电源用的一次(非充电的)和二次(可充电的)锂电池,标准的目的是减少锂电池在产品使用时着火或爆炸的危险。标准中关于电池的电性能测试,包括短路试验、不正常充电试验和强制放电试验;机械试验包括挤压试验、撞击试验、冲击试验和振动试验;环境试验包括热滥用、温度循环试验、高空模拟试验和抛射体试验等。试验要求,被测电池在试验过程中不起火、不爆炸、不漏液、不排气、不燃烧,且包装不破裂。IEEE1625:2008《笔记本电脑用可充电电池标准》和IEEE1725:2006《移动电话用可充电电池标准》主要是对便携式计算机和蜂窝电话用蓄电池的设计、生产和开发建立统一的准则,主要涉及电池和电池组有关的电子、物理结构、化学成分、加工流程、质量控制及包装技术等领域。相对于其他电池标准普遍重视电池或电池组的情况,上述标准分别对电芯、电池、主机节点、电源附件、消费者和环境等几个方面进行了综合性考虑。这两项标准均侧重于设计和制造过程,针对电池后期的使用问题,尤其是安全性问题涉及不多。

目前,国内外常用的锂离子电池标准列表归纳于表1

现行的主要标准可概括为以下几类:

1、主要针对运输过程中的外部环境和机械振动

如UN38.3、IEC62281:2012等,通过高度模拟、温度试验、振动、冲击、外短路和撞击等测试项目,模拟锂离子电池在运输过程中可能发生的危险,对于锂离子电池在使用过程中的安全问题涉及较少。

2、主要针对设计和制造过程

如IEEE1625、IEEE1725等。以IEEE1725为例,标准将手机锂离子电池系统分为4个板块,即电芯、电池组、主机及电池充电器部分,全面明确地对电芯的设计、原材料、制造工艺和成品测试评估等进行了要求,为电芯乃至手机等通信产品的安全性提供可靠评估保障。上述标准主要针对电池的设计和制造过程,对于锂离子电池后期使用中的安全问题涉及不多。且诸如此类的IEEE锂离子电池标准,由于对象为不同设备中的锂离子电池的设计和制造,针对性较强,适用范围受到一定的限制。

3、主要针对锂离子电池电性能和安全性

如UL1642、GB8897.4等,通过短路、不正常充电、强制放电试验挤压、撞击、冲击、振动、热滥用、温度循环、高空模拟试验及抛射体等测试项目,要求被测锂离子电池在试验过程中不起火、不爆炸、不漏液、不排气、不燃烧且包装不破裂。比较上述两类标准,此类标准的核心是锂离子电池的安全性,更注意温度导致的电池安全风险,但判定依据难以量化,只能用被测电池的爆炸、起火、冒烟、泄漏、破裂和变形等来区分,不利于检出可能存在潜在危险的电池。

现有标准的不足:

过充过程成为了导致锂离子电池发生不安全行为的危险因素:当发生过充时,由于发生了不可逆的化学反应,电能转变成热能,导致电池温度迅速升高,从而引发一系列的化学反应。尤其是当散热性较差时,往往导致比单纯的热冲击更严重的问题,可能发生电池起火,甚至爆炸。

根据对现有主要标准的分析不难发现,现有的标准对锂离子电池安全性能的检测方法和评判依据还显得不足。这些标准中,有部分是针对锂离子电池的外部环境和设计制造过程的标准;即便是针对安全性能的标准,也缺少明确的可量化衡量的检测方法和评判体系,尤其是爆炸、起火、冒烟、泄漏、破裂和变形等判断依据,过于宽泛。

迫切需要一种针对锂离子电池热效应及电池温度变化,可定量分析并判定安全风险的检测方法。近几年,国内外研究者在不断研究更科学、高效的检测方法和手段,其中通过对于热效应及电池温度方面的研究,取得不少进展。通过检测电池的表面温度,结合电化学模型,利用量热法计算得到电池充电过程中放出的热量和热传导系数,之后建立热效应理论模型,可模拟计算电池内部的温度,进而来描述电池的热行为。人们已经建立了多种类型的热效应模型,但采取的测温手段主要是传统的热电偶测温法。热电偶操作比较复杂,且只能有限布点,不能全面地掌握样品温度分布;同时,热电偶还带有延时性,不能及时反映锂离子电池的温度变化情况,不利于建立实时温度变化曲线。

在理论研究方面,目前,人们倾向于利用理论模拟的方法体现锂离子电池的热安全性能,并设计了很多模型,通过分析热性能来计算,得到锂离子电池在不同工作环境下的温度曲线。这些理论模型的原理是通过测量锂离子电池的表面温度来评价内部温度,再与利用热电偶等方式测出的温度进行比对,一方面说明理论模型的预判性和正确性;另一方面对安全性进行评价。理论模型的建立可以使学者对于锂离子电池的热效应有较全面的认识,但对于安全性能的检测和评价却不直观。

安全性能已经成为锂离子电池的一个重要指标,成为除成本因素外另一个制约锂离子电池应用的关键指标。由于锂离子电池的特性,在最初的使用阶段并不会显示出电化学行为的异常。这些潜在的缺陷给判断锂离子电池是否合格带来困难。目前国内外对锂离子电池安全性的潜在风险缺乏检测方法和评判依据,未形成快速、有效的锂离子电池安全性检测方法或筛选方法。

随着消费者对锂离子电池电性能及安全性要求的日益提升,各电池制造商以及各国主管部门、行业协会等有必要对锂离子电池安全性能的检测手段进行研究,建立一套直观、快速、有效的检测方法,在现有标准体系的范围内,提高要求,进一步细化标准,明确判定依据,弥补现有锂离子电池检测标准和体系的不足,提高锂离子电池安全性能检测水平,保证锂离子电池行业的可持续发展,维护消费者在电池使用过程中的安全。

来源:阿尔法检验

干货|锂电池的安全性、检测及解决方案

私信“锂电”二字,即可领取10.99G锂电行业精华版资料!

来源:嘉峪检测网

近些年,由于电池安全问题引发的事故比比皆是,很多问题造成的后果触目惊心,比如震惊业界的波音787“梦幻”客机锂电池起火事件,以及SamsungGalaxy Note 7 大范围的电池起火爆炸事件,给锂离子电池的安全性问题再次敲响了警钟。

一、锂离子电池的组成及工作原理

锂离子电池主要由正极、负极、电解液、隔膜以及外部连接、包装部件构成。其中,正极、负极包含活性电极物质、导电剂、粘结剂等,均匀涂布于铜箔和铝箔集流体上。

锂离子电池的正极电位较高,常为嵌锂过渡金属氧化物,或者聚阴离子化合物,如钴酸锂、锰酸锂、三元、磷酸铁锂等;锂离子电池负极物质通常为碳素材料,如石墨和非石墨化碳等;锂离子电池电解液主要为非水溶液,由有机混合溶剂和锂盐构成,其中溶剂多为碳酸之类有机溶剂,锂盐多为单价聚阴离子锂盐,如六氟磷酸锂等;锂离子电池隔膜多为聚乙烯、聚丙稀微孔膜,起到隔离正、负极物质,防止电子通过引起短路,同时能让电解液中离子通过的作用。

在充电过程中,电池内部,锂以离子形式从正极脱出,由电解液传输穿过隔膜,嵌入到负极中;电池外部,电子由外电路迁移到负极。在放电过程中:电池内部锂离子从负极脱出、穿过隔膜,嵌入到正极中;电池外部,电子由外电路迁移到正极。随着充、放电,迁移于电池间的是“锂离子”,而非单质“锂”,因此电池被称为“锂离子电池”。

二、锂离子电池的安全隐患

一般来说,锂离子电池出现安全问题表现为燃烧甚至爆炸,出现这些问题的根源在于电池内部的热失控,除此之外,一些外部因素,如过充、火源、挤压、穿刺、短路等问题也会导致安全性问题。锂离子电池在充放电过程中会发热,如果产生的热量超过了电池热量的耗散能力,锂离子电池就会过热,电池材料就会发生SEI膜的分解、电解液分解、正极分解、负极与电解液的反应和负极与粘合剂的反应等破坏性的副反应。

1、正极材料的安全隐患

当锂离子电池使用不当时,导致电池内部温度的升高,使正极材料会发生活性物质的分解和电解液的氧化。同时,这两种反应能够产生大量的热,从而造成电池温度的进一步上升。不同的脱锂状态对活性物质晶格转变、分解温度和电池的热稳定性影响相差很大。

2、负极材料的安全隐患

早期使用的负极材料是金属锂,组装的电池在多次充放电后易产生锂枝晶,进而刺破隔膜,导致电池短路、漏液甚至发生爆炸。嵌锂化合物能够有效避免锂枝晶的产生,大大提高锂离子电池的安全性。随着温度的升高,嵌锂状态下的碳负极首先与电解液发生放热反应。相同的充放电条件下,电解液与嵌锂人造石墨反应的放热速率远大于与嵌锂的中间相碳微球、碳纤维、焦碳等的反应放热速率。

3、隔膜与电解液的安全隐患

锂离子电池的电解液为锂盐与有机溶剂的混合溶液,其中商用的锂盐为六氟磷酸锂,该材料在高温下易发生热分解,并与微量的水以及有机溶剂之间进行热化学反应,降低电解液的热稳定性。电解液有机溶剂为碳酸酯类,这类溶剂沸点、闪点较低,在高温下容易与锂盐释放PF5的反应,易被氧化。

4、制造工艺中的安全隐患

锂离子电池在制造过程中,电极制造、电池装配等过程都会对电池的安全性产生影响。如正极和负极混料、涂布、辊压、裁片或冲切、组装、加注电解液的量、封口、化成等诸道工序的质量控制,无一不影响电池的性能和安全性。浆料的均匀度决定了活性物质在电极上分布的均匀性,从而影响电池的安全性。浆料细度太大,电池充放电时会出现负极材料膨胀与收缩比较大的变化,可能出现金属锂的析出;浆料细度太小会导致电池内阻过大。涂布加热温度过低或烘干时间不足会使溶剂残留,粘结剂部分溶解,造成部分活性物质容易剥离;温度过高可能造成粘结剂炭化,活性物质脱落造成电池内部短路。

5、电池使用过程中的安全隐患

锂离子电池在使用过程中应该尽可能减少过充电或者过放电,特别对于单体容量高的电池,因热扰动可能会引发一系列放热副反应,导致安全性问题。

三、锂离子电池安全检测指标

锂离子电池生产出来后,在到达消费者手中之前,还需要进行一系列检测,以尽量保证电池的安全性,降低安全隐患。

1、挤压测试:

将充满电的电池放在一个平面上,由油压缸施与13±1KN的挤压力,由直径为32mm的钢棒平面挤压电池,一旦挤压压力到达最大停止挤压,电池不起火,不爆炸即可。

2、撞击测试:

电池充满电后,放置在一个平面上,将直径15.8mm的钢柱垂直置于电池中心,将重量9.1kg的重物从610mm的高度自由落到电池上方的钢柱上。电池不起火、不爆炸即可。

3、过充测试:

将电池用1C充满电,按照3C过充10V进行过充试验,当电池过充时电压上升到一定电压时稳定一段时间,接近一定时间时电池电压快速上升,当上升至一定限度时,电池高帽拉断,电压跌至0V,电池没有起火、爆炸即可。

4、短路测试:

将电池充满电后用电阻不大于50mΩ的导线将电池正负极短路,测试电池的表面温度变化,电池表面最高温度为140℃,电池盖帽拉开,电池不起火、不爆炸。

5、针刺测试:

将充满电的电池放在一个平面上,用直径3mm的钢针沿径向将电池刺穿。测试电池不起火、不爆炸即可。

6、温度循环测试:

锂离子电池温度循环试验是用来模拟锂离子电池在运输或贮存过程中,反复暴露在低温和高温环境下,锂离子电池的安全性,试验是利用迅速和极端的温度变化进行的。试验后样品应不起火、不爆炸、不漏液。

四、锂离子电池安全性解决方案

针对锂离子电池在材料、制造和使用过程中的诸多安全隐患,如何对容易产生安全问题的部分进行改进,是锂离子电池制造商需要解决的问题。

1、提高电解液的安全性

电解液与正、负电极之间均存在很高的反应活性,尤其在高温下,为了提高电池的安全性,提高电解液的安全性是比较有效的方法之一。通过加入功能添加剂、使用新型锂盐以及使用新型溶剂可以有效解决电解液的安全隐患。

根据添加剂功能的不同,主要可以分为以下几种:安全保护添加剂、成膜添加剂、保护正极添加剂、稳定锂盐添加剂、促锂沉淀添加剂、集流体防腐添加剂、增强浸润性添加剂等。

为了改善商用锂盐的性能,研究者们对其进行了原子取代,得到了许多衍生物,其中采用全氟烷基取代原子得到的化合物具有闪点高、电导率近似、耐水性增强等诸多优点,是一类很有应用前景的锂盐化合物。另外,以硼原子为中心原子、与氧配体螯合得到的阴离子锂盐,具有很高的热稳定性。

对于溶剂方面,很多研究者提出了一系列新型的有机溶剂,如羧酸酯、有机醚类有机溶剂。另外,离子液体也有一类安全性高的电解液,但是相对普遍使用的碳酸酯类电解液,离子液体的粘度高个数量级,电导率、离子自扩散系数较低,离实用化还有很多工作要做。

2、提高电极材料的安全性

磷酸铁锂以及三元复合材料被认为是成本低廉、“安全性优良”的正极材料,有可能在电动汽车产业中普及应用。对于正极材料,提高其安全性的常见方法为包覆修饰,如用金属氧化物对正极材料进行表面包覆,可以阻止正极材料与电解液之间的直接接触,抑制正极物质发生相变,提高其结构稳定性,降低晶格中阳离子的无序性,以降低副反应产热。

对于负极材料,由于其表面的往往是锂离子电池中最容易发生热化学分解并放热的部分,因此提高SEI膜的热稳定性是提高负极材料安全性的关键方法。通过微弱氧化、金属和金属氧化物沉积、聚合物或者碳包覆,可以提高负极材料热稳定性。

3、改善电池的安全保护设计

除了提高电池材料的安全性,商品锂离子电池采用的许多安全保护措施,如设置电池安全阀、热溶保险丝、串联具有正温度系数的部件、采用热封闭隔膜、加载专用保护电路、专用电池管理系统等,也是增强安全性的手段。

来源:嘉峪检测网

私信“锂电”二字,即可领取10.99G锂电行业精华版资料!

相关问答

锂电池 安全国家标准?

你好,目前,中国锂电池安全方面的国家标准主要有以下几个:1.GB/T18287-2013《锂离子电池组》:规定锂离子电池组的术语、定义、分类、要求、试验方法、标志...

星恒48v24ah 锂电池安全性 测试?

星恒48v24ah锂电池的安全性测试是十分必要的,因为锂电池具有燃爆的潜在危险。测试须全面而细致,包括过充、过放、短路、高温、振动、穿刺、压力等多种严苛条件...

锂电池 安全吗'?

安全。电动车锂电池在正常情况下还是比较安全的。锂电池本身并没有那么危险,只是因为在使用时需要有锂电池保护系统,再就是使用时要避免。安全。电动车锂电...

电池 模拟器模拟 电池 认准深圳昂盛达电子有限公司

[回答]使用电池模拟器测试电池可提供重复性测试的结果随着使用时间的增加,电池的性能也会发生改变,zui终导致电池耗尽,不得不重新换个电池。所以我们说电...

锂电池安全性 高吗?

锂电池在许多方面具有较高的安全性,但也存在一些安全隐患,需要谨慎使用。以下是关于锂电池安全性的一些重要点:1.热失控:如果锂电池受到损坏、过充电、过放...

新国标电动车 锂电池 有安全标准吗?

工信部明确公示并征集意见,意味着锂电池的强制性国家标准正在快速地进入流程,锂电池终于将要迎来强制性新国标了。新国标中的规定,对电动自行车整车质量规定...

电动车 锂电池 国家强制标准?

对于电动车锂电池的国家强制标准,具体要看不同国家的法规和标准。以下是一些可能的国家强制标准的例子:1.中国:中国国家质量监督检验检疫总局发布了《电动车...

锂电池 msds报告和un38.3认证是什么意思?有什么不同

[最佳回答]UnitedNations《关于危险货物运输的建议书试验和标准手册》电池在使用和运输过程中是存在危险的,电池需空运需提供UN38.3测试报告,UN38.3是电池安...

怎么判定锂离子 电池 是否过充或者过放?

判定锂离子电池是否过充或者过放最简单的方法是用万用表测试电池的电压。非磷酸铁铝电池判别如下:实测电压≥4.2-4.3V说明电池过充电;实测电压≤2.5-2.3V...

怎样 检测锂电池 保护板过充过放功能是否达标?

[回答]由于锂离子电池的化学特性,电池生产厂家规定了其放电电流最大不能超过2C(C=电池容量/小时),当电池超过2C电流放电时,将会导致电池的永久性损坏或出...