锂电池容量衰减,这三个因素注意到了吗?
【能源人都在看,点击右上角加“关注”】
导读: 锂离子电池是继镉镍、氢镍电池之后发展最快的二次电池。它的高能特性让它的未来看起来一片光明。但是,锂离子电池并不完美,其最大的问题就是它的充放电循环的稳定性。本文总结并分析了锂离子电池容量衰减的可能原因,包括过充电,电解液分解及自放电。锂离子电池在两个电极间发生嵌入反应时 具有不同的嵌入能量,而为了得到电池的最佳性能,两个宿主电极的容量比应该保持一个平衡值。
在锂离子电池中, 容量平衡表示成为正极对负极的质量比 ,
即:γ=m+/m-=ΔxC-/ΔyC+
上式中C指电极的理论库仑容量,Δx、Δy分别指嵌入负极及正极的锂离子的化学计量数。从上式可以看出,两极所需要的质量比依赖于两极相应的库仑容量及其各自可逆锂离子的数目。
一般说来,较小的质量比 导致负极材料的不完全利用;较大的质量 比则可能由于负极被过充电而存在安全隐患。总之在最优化的质量比处,电池性能最佳。
对于理想的Li-ion电池系统 ,在其循环周期内容量平衡不发生改变,每次循环中的初始容量为一定值,然而实际情况 却复杂得多。任何能够产生或消耗锂离子或电子的副反应都可能导致电池容量平衡的改变,一旦电池的容量平衡状态发生改变,这种改变就是不可逆的,并且可以通过多次循环进行累积,对电池性能产生严重影响。在锂离子电池中,除了锂离子脱嵌 时发生的氧化还原反应外,还存在着大量的副反应 ,如电解液分解、活性物质溶解、金属锂沉积等。
原因一:过充电
1、石墨负极的过充反应:
电池在过充时,锂离子容易还原沉积在负极表面:
沉积的锂包覆在负极表面,阻塞了锂的嵌入。导致放电效率降低和容量损失,原因有:
①可循环锂量减少;
②沉积的金属锂与溶剂或支持电解质反应形成Li2CO3,LiF 或其他产物;
③金属锂通常形成于负极与隔膜之间,可能阻塞隔膜的孔隙增大电池内阻;
④由于锂的性质很活泼,易与电解液反应而消耗电解液.从而导致放电效率降低和容量的损失。
快速充电,电流密度过大,负极严重极化,锂的沉积会更加明显。这种情况容易发生在正极活性物相对于负极活性物过量的场合。但是,在高充电率的情况下,即使正负极活性物的比例正常,也可能发生金属锂的沉积 。
2、正极过充反应
当正极活性物相对于负极活性物比例过低时,容易发生正极过充电。
正极过充导致容量损失主要是由于电化学惰性物质(如Co3O4,Mn2O3等)的产生,破坏了电极间的容量平衡,其容量损失是不可逆的。
(1)LiyCoO2LiyCoO2→(1-y)/3[Co3O4+O2(g)]+yLiCoO2y
同时正极材料在密封的锂离子电池中分解产生的氧气由于不存在再化合反应(如生成H2O)与电解液分解产生的可燃性气体同时积累,后果将不堪设想。
(2)λ-MnO2
锂锰反应发生在锂锰氧化物完全脱锂的状态下:λ-MnO2→Mn2O3+O2(g)3、电解液在过充时氧化反应
当压高于4.5 时电解液就会氧化生成不溶物(如Li2Co3)和气体,这些不溶物会堵塞在电极的微孔里面阻碍锂离子的迁移而造成循环过程中容量损失。影响氧化速率因素:
正极材料表面积大小
集电体材料
所添加的导电剂(炭黑等)
炭黑的种类及表面积大小
在目前较常用电解液中,EC/DMC被认为是具有最高的耐氧化能力。溶液的电化学氧化过程一般表示为:溶液→氧化产物(气体、溶液及固体物质)+ne-
任何溶剂的氧化都会使电解质浓度升高,电解液稳定性下降,最终影响电池的容量 。 假设每次充电时都消耗一小部分电解液,那么在电池装配时就需要更多的电解液。对于恒定的容器来说,这就意味着装入更少量的活性物质,这样会造成初始容量的下降。此外,若产生固体产物,则会在电极表面形成钝化膜,这将引起电池极化增大而降低电池的输出电压。
原因二:电解液分解(还原)
I 在电极上分解
1、电解质在正极上分解:
电解液由溶剂和支持电解质组成,在正极分解后通常形成不溶性产物Li2Co3和LiF等,通过阻塞电极的孔隙而降低电池容量,电解液还原反应对电池的容量和循环寿命会产生不良影响,并且由于还原产生了气体会使电池内压升高,从而导致安全问题。
正极分解电压通常大于4.5V(相对于Li/Li+),所以,它们在正极上不易分解。相反,电解质在负极较易分解。
2、电解质在负极上分解:
电解液在石墨和其它嵌锂碳负极上稳定性不高,容易反应产生不可逆容量。初次充放电时电解液分解会在电极表面形成钝化膜 ,钝化膜能将电解液与碳负极隔开阻止电解液的进一步分解。从而维持碳负极的结构稳定性。理想条件下电解液的还原限制在钝化膜的形成阶段,当循环稳定后该过程不再发生。
钝化膜的形成
电解质盐的还原参与钝化膜的形成,有利于钝化膜的稳定化,但是
(1)还原产生的不溶物对溶剂还原生成物会产生不利影响;
(2)电解质盐还原时电解液的浓度减小,最终导致电池容量损失(LiPF6 还原生成LiF、LixPF5-x、PF3O 和PF3);
(3)钝化膜的形成要消耗锂离子,这会导致两极间容量失衡而造成整个电池比容量降低。
(4)如果钝化膜上有裂缝,则溶剂分子能透入,使钝化膜加厚,这样不但消耗更多的锂,而且有可能阻塞碳表面上的微孔,导致锂无法嵌入和脱出,造成不可逆容量损失。在电解液中加一些无机添加剂,如CO2,N2O,CO,SO2等,可加速钝化膜的形成,并能抑制溶剂的共嵌和分解,加入冠醚类有机添加剂也有同样的效果,其中以12冠4醚最佳。
成膜容量损失的因素:
(1)工艺中使用碳的类型;
(2)电解液成份;
(3)电极或电解液中添加剂。
Blyr 认为离子交换反应从活性物质粒子表面向其核心推进,形成的新相包埋了原来的活性物质,粒子表面形成了离子和电子导电性较低的钝化膜,因此贮存之后的尖晶石比贮存前具有更大的极化。
Zhang 通过对电极材料循环前后的交流阻抗谱的比较分析发现,随着循环次数的增加,表面钝化层的电阻增加,界面电容减小。反映出钝化层的厚度是随循环次数而增加的。锰的溶解及电解液的分解导致了钝化膜的形成,高温条件更有利于这些反应的进行。这将造成活性物质粒子间接触电阻及Li+迁移电阻的增大,从而使电池的极化增大,充放电不完全,容量减小。
II 电解液的还原机理
电解液中常常含有氧、水、二氧化碳等杂质,在电池充放电过程中发生氧化还原反应。
电解液的还原机理包括溶剂还原、电解质还原及杂质还原三方面:
1、溶剂的还原
PC和EC的还原包括一电子反应和二电子反应过程,二电子反应形成Li2CO3:
Fong 等认为,在第一次放电过程中,电极电势接近O.8V(vs.Li/Li+)时,PC/EC在石墨上发生电化学反应,生成CH=CHCH3(g)/CH2=CH2(g)和LiCO3(s),导致石墨电极上的不可逆容量损失。
Aurbach 等对各种电解液在金属锂电极和碳基电极上还原机理及其产物进行了广泛的研究,发现PC的一电子反应机理产生ROCO2Li和丙烯。ROCO2Li对痕量水很敏感,有微量水存在时主要产物为Li2CO3和丙稀,但在干燥情况下并无Li2CO3产生。
DEC的还原:
Ein-Eli Y 报道,由碳酸二乙酯 (DEC)和碳酸二甲酯(DMC)混合而成的电解液,在电池中会发生交换反应,生成碳酸甲乙酯(EMC),对容量损失产生一定的影响。
2、电解质的还原
电解质的还原反应通常被认为是参与了碳电极表面膜的形成,因此其种类及浓度都将影响碳电极的性能。在某些情况下,电解质的还原有助于碳表面的稳定,可形成所需的钝化层。
一般认为,支持电解质要比溶剂容易还原,还原产物夹杂于负极沉积膜中而影响电池的容量衰减。几种支持电解质可能发生的还原反应如下:
3、杂质还原
(1)电解液中水含量过高会生成LiOH(s)和Li2O沉积层,不利于锂离子嵌入,造成不可逆容量损失:
H2O+e→OH-+1/2H2
OH-+Li+→LiOH(s)
LiOH+Li++e-→Li2O(s)+1/2H2
生成LiOH(s)在电极表面沉积,形成电阻很大的表面膜,阻碍Li+嵌入石墨电极,从而导致不可逆容量损失。溶剂中微量水(100-300×10-6)对石墨电极性能没影响。
(2)溶剂中的CO2在负极上能还原生成CO和LiCO3(s):
2CO2+2e-+2Li+→Li2CO3+CO
CO会使电池内压升高,而Li2CO3(s)使电池内阻增大影响电池性能。
(3)溶剂中的氧的存在也会形成Li2O
1/2O2+2e-+2Li+→Li2O
因为金属锂与完全嵌锂的碳之间电位差较小,电解液在碳上的还原与在锂上的还原类似。
原因三:自放电
自放电 是指电池在未使用状态下,电容量自然损失的现象。锂离子电池自放电导致容量损失分两种情况 :
一是可逆容量损失;
二是不可逆容量的损失。
可逆容量损失是指损失的容量能在充电时恢复,而不可逆容量损失则相反,正负极在充电状态下可能与电解质发生微电池作用,发生锂离子嵌入与脱嵌,正负极嵌入和脱嵌的锂离子只与电解液的锂离子有关,正负极容量因此不平衡,充电时这部分容量损失不能恢复。如:
锂锰氧化物正极与溶剂会发生微电池作用产生自放电造成不可逆容量损失:
LiyMn2O4+xLi++xe-→Liy+xMn2O4
溶剂分子(如PC)在导电性物质碳黑或集流体表面上作为微电池负极氧化:
xPC→xPC-自由基+xe-
同样,负极活性物质可能会与电解液发生微电池作用产生自放电造成不可逆容量损失,电解质(如LiPF6)在导电性物质上还原:
PF5+xe-→PF5-x
充电状态下的碳化锂作为微电池的负极脱去锂离子而被氧化:
LiyC6→Liy-xC6+xLi+++xe-
自放电影响因素 :正极材料的制作工艺,电池的制作工艺,电解液的性质,温度,时间。
自放电速率主要受溶剂氧化速率控制,因此溶剂的稳定性影响着电池的贮存寿命。
溶剂的氧化主要发生在碳黑表面,降低碳黑表面积可以控制自放电速率,但对于LiMn2O4正极材料来说,降低活性物质表面积同样重要,同时集电体表面对溶剂氧化所起的作用也不容忽视。
通过电池隔膜而泄漏的电流也可以造成锂离子电池中的自放电,但该过程受到隔膜电阻的限制,以极低的速率发生,并与温度无关。考虑到电池的自放电速率强烈地依赖于温度,故这一过程并非自放电中的主要机理。
如果负极处于充足电的状态而正极发生自放电,电池内容量平衡被破坏,将导致永久性容量损失 。
长时间或经常自放电时,锂有可能沉积在碳上,增大两极间容量不平衡程度。
Pistoia 等比较了3种主要金属氧化物正极在各种不同电解液中的自放电速率,发现自放电速率随电解液不同而不同。并指出自放电的氧化产物堵塞电极材料上的微孔,使锂的嵌入和脱出困难并且使内阻增大和放电效率降低,从而导致不可逆容量损失。
本文来源:锂电前沿 本公众号发布本文之目的在于传播更多信息,并不意味着本公众号赞同或者否定本文部分以及全部观点或内容。本文版权归原作者所有,如涉及版权问题,请及时联系我们删除。
免责声明:以上内容转载自中国化学与物理电源行业协会,所发内容不代表本平台立场。
全国能源信息平台联系电话:010-65367827,邮箱:hz@people-energy.com.cn,地址:北京市朝阳区金台西路2号人民日报社
随着时代发展而起的三元锂、磷酸铁锂电池终将随着发展时代而亡
中国动力电池的发展之路就像是经历了一个轮回。 从2008年比亚迪推出第一款搭载磷酸铁锂电池的F3 DM开始,磷酸铁锂电池就在中国的新能源汽车行业中呈现出了一枝独秀的状态。到2016年12月30日,中国首次把对电池能量密度的要求加入了新能源汽车补贴政策当中,三元锂电池就开始强势崛起,而磷酸铁锂电池走向了衰败。
2020年8月,特斯拉Model 3的磷酸铁锂电池版本车型正式上市,磷酸铁锂电池再度向动力电池领域发起反攻。紧接着,比亚迪、小鹏纷纷换装上市了磷酸铁锂电池版本的车型,就连传统车企巨头大众也在近期表明要在入门电动车上搭载磷酸铁锂电池。
得到了众多车企的支持以后,磷酸铁锂电池去年下半年的出货量一路飙升,在去年12月甚至已经完成了对三元锂电池的反超。 那么,是什么导致了磷酸铁锂电池完成逆袭,它与三元锂电池究竟有什么“恩怨纠葛”,又是什么原因让车企们突然觉得磷酸铁锂电池这位“过气网红”真香呢?
磷酸铁锂VS三元锂,3胜2败
第一回合:能量密度
磷酸铁锂电池的电池电压平台较低,电芯能量密度大概只有140Wh/kg左右,而三元锂电池的电压平台较高,电芯能量密度能够达到240Wh/kg。这也就意味着在相同的电池重量下,三元锂电池的能量密度是磷酸铁锂电池的1.7倍,三元锂电池在能量密度上可以完胜磷酸铁锂电池。
电池能量密度是衡量一款新能源汽车续航能力的重要指标,而续航能力又是目前新能源汽车发展的主要方向之一 ,所以能量密度就成为了三元锂电池最大的优势,也是磷酸铁锂电池最大的劣势,甚至可以说是当初磷酸铁锂电池被市场淘汰出局的主要原因。
磷酸铁锂电池之所以能够重出江湖,是因为电池厂商们找到了一种方法可以改善它能量密度,使得它的续航能力达到了消费者和车企们都能接受的水平,这种方法就是CTP技术。CTP技术说白了就是通过简化电池包的物理结构,让动力电池可以在有限的空间内可以容纳更多的电芯。
第二回合:安全性
磷酸铁锂电池是目前热稳定性最好的动力电池,在安全性上相较于三元锂电池有着绝对的优势。 磷酸铁锂电池的电热峰值高达350℃,电池内部的化学成分需要达到500~600℃才会开始分解;而三元锂电池的热稳定性表现就很一般了,它在300℃左右就会开始分解。
生命是很宝贵的,任何东西一旦涉及到生命安全,那么就很容易触动人们的神经。磷酸铁锂电池和三元锂电池在安全性能上的巨大差异,能够让磷酸铁锂电池站在道德制高点之上,同样也能让三元锂电池处于舆论风暴之中。
有意思的是,电池厂商们解决三元锂电池安全问题的方法和解决磷酸铁锂电池能量密度的方法如出一辙。磷酸铁锂电池是通过在物理结构上的优化来容纳更多的单体电池;而三元锂电池同样也是通过优化物理结构来解决它的安全问题,区别只是三元锂电池把电池包弄得更加坚固、更加耐热了而已。
第三回合:低温衰减
对于北方的纯电动汽车用户来说,最让它们头疼的或许并不是续航里程和安全性能,毕竟前者在买车时就已经权衡过了,后者则只是个小概率事件。最让北方的电动汽车用户头疼的应该还是纯电动汽车在冬天的低温性能。
三元锂电池的低温温度使用下限能够达到-30℃,相较于磷酸铁锂电池,它的表现已经算是相当不错了。因为磷酸铁锂电池的低温温度使用下限仅有-20℃,并且磷酸铁锂电池在低温环境下的放电性能差,在0℃的气温条件下的容量保持率还有60~70%左右,到-20℃时就仅剩下20~40%了。磷酸铁锂电池在低温条件下较差的放电能力以及温度下限,直接导致了它在严寒地区有着非常尴尬的处境。
为了改善动力电池低温衰减现象,车企们大多会为动力电池提供相应的热管理系统。 所谓的热管理系统本质上就是为动力电池增加了一个暖宝宝,而暖宝宝之所以能够在严寒气温下暖起来依然需要依靠电池来提供电力支持,因此即便是加了暖宝宝的新能源汽车在严寒条件下的续航表现也依然不理想。
第四回合:使用寿命
磷酸铁锂电池的寿命远高于三元锂电池 ,前者理论上的电池充放电循环次数要大于3500次以后,电池电量才会衰减到80%(报废标准),而三元锂电池的使用寿命大概只有2000次完全充放电循环,使用寿命大概只有前者的2/3。
另外,安全环保的磷酸铁锂电池在达到动力电池报废标准之后,依然可以在其他领域继续储能,并不会对环境造成太大污染,战略发展意义较高 ;而三元锂电池的回收流程则相当复杂,且稍有不慎就会造成环境污染,甚至有可能发生安全事故。
第五回合:电池成本
在电池成本方面,磷酸铁锂电池因为没有什么贵重金属,所以生产成本更低 ;而三元锂电池则采用了镍、钴、锰等多种价格昂贵的贵重金属材料,其中镍的价格高达11万元/吨,钴的价格更是一路飞涨到了20万元/吨以上。
对于消费者而言,安全永远都是摆在第一位,但是对于车企来说,成本低才是它们“叛变”的根本原因。 在未来新能源汽车发展过程中,价格战是车企们势在必行的手段,采用更加便宜的动力电池则是最容易实现降本的方法之一。
为时代而生,终将为时代而亡
无论是优势还是缺点,这两种在新能源汽车领域占据主流地位的动力电池,它们之间的差异基本都是由不同的化学特性导致的。 化学特性导致的问题通常都是最不好解决的问题,所以这两种电池面临的问题是它们目前亟待突破的瓶颈。
尽管目前无论是磷酸铁锂电池的能量密度还是三元锂电池的安全问题,亦或者是它们之间都有的低温衰减问题都已经有了相应的解决方案;但是无论是比亚迪刀片电池(磷酸铁锂电池)用的CTP技术,还是广汽埃安的弹匣电池技术(三元锂电池),亦或者给动力电池装上“暖宝宝”这样简单粗暴的低温衰减解决方案,都只是从物理层面上缓解了它们存在的问题。
由此可见,动力电池厂商们都在不约而同地规避磷酸铁锂电池和三元锂电池存在的化学瓶颈,而是采用了优化物理结构的方式来优化它们存在的问题 ,在小雷看来,这样的做法就是典型的治标不治本。
电池的化学成分就相当于人体所必须的钙、铁、锌、硒、维生素,动力电池包则相当于人体的五脏六腑以及骨骼框架。动力电池厂商们现阶段用来改良电池缺陷的方法本质上就像是在为一个缺钙的病人实施了一场骨骼外科手术。
当然,小雷可以站在旁观者的角度看待动力电池的发展过程,但是却没有资格以上帝的视角来看待问题。在小雷看来,三元锂电池和磷酸铁锂电池有可能可以通过改变化学配方对它们的化学特性进行相应的优化,但是改变化学特性带来的研发难度势必会比改变物理结构要大得多,所以动力电池厂商们选择一条相对简单的道路也是可以理解的。
如果三元锂电池和磷酸铁锂电池在化学特性上遇到的瓶颈迟迟不能突破,而物理结构上的优化始终都会存在局限性。这样一来,这两种随着时代发展而生的动力电池终将也会随着时代发展而亡。
注:本文素材来源于网络
欢迎关注锋出行(fengchuxing2021)公众号,第一时间获取汽车资讯。
相关问答
锂电池衰减 原因及解决方法?1.电芯老化、衰退。2.自放电率不同,导致的串联电芯电量不平衡,最终导致锂离子电池容量降低不耐用。3.在电池使用及充放电过程中,会出现硫化现象影响电池容量...
电动车 锂电池 半年 衰减 多少?半年衰减额定容量的百分之五,在正常情况下,电池衰减的问题并不会突然暴露,它只会随着用车时间的增加从而慢慢暴露。电容量从100%新电池状态衰减到80%,一般需...
锂电池 为什么会 衰减 , 锂电池 为什么会 衰减 快[最佳回答]锂电池衰减的主要原因是锂离子与电解液在移动过程中发生的反应,导致锂离子损耗,进而使得锂电池性能随着充放电次数的增加而下降。在充电和放电过程...
铅酸电池与 锂电池衰减 率?和锂电池相比,在同等是使用强度下,铅酸电池绝对比锂电池的损耗更快。但一般来说,常规使用强度下,一块合格的铅酸电池,使用一年左右续航便会衰减30%以上,两...
锂电池 寿命按年数还是按充放次数?锂电池的寿命是按充放次数算的。锂电池一般能够充放350-600次。对锂电池进行部分放电,要尽量避免经常的完全放电。一旦电池下了生产线,寿命就开始衰减。不管你...
锂电池 循环多少次容量 衰减 ?锂电池的循环次数与容量衰减之间的关系取决于多种因素,包括使用和充电条件、充电倍率、温度等。一般来说,充电倍率越低、温度越低、充放电循环深度越小,电池的...
锂电池 冬天 衰减 多少_车坛锂电池冬天衰减百分之十左右,需要根据个人使用习惯来确定。锂电池寿命与充电周期:锂电池寿命在3-5年,锂电池有着严格的充电次数,一般会在1000-1200...
电动车 锂电池 每年 衰减 率?锂电池寿命比较长,一年的情况下衰减不超过百分之十的,锂电池寿命有七八百循环次数,你一年正常情况下能有一百循环就不错了,所以第一年衰减通常都是在百分之八...
如何通俗地理解 锂电池 寿命 衰减 ?在过去的三十年里,锂离子电池,一种将锂离子来回移动到充电和放电的可充电电池,使得小型设备的充电速度更快,持续时间更长。由SLAC的斯坦福材料与能源科学研...
铁 锂衰减 一半还能用吗?铁锂电池衰减一半后仍可使用,但容量和性能会受到影响。一般来说,铁锂电池的衰减速度与使用条件和环境有关,例如高温、高压、过充过放电等都会加速电池衰减。因...