锂电池自放电测试 锂离子电池自放电,终于有人总结透彻了

小编 2024-10-06 锂离子电池 23 0

锂离子电池自放电,终于有人总结透彻了

【能源人都在看,点击右上角加'关注'】

来源丨锂电前沿

导读

自放电的一致性是影响因素的一个重要部分,自放电不一致的电池在一段时间储存之后SOC会发生较大的差异,会极大地影响它的容量和安全性。对其进行研究,有助于提高我们的电池组的整体水平,获得更高的寿命,降低产品的不良率。

含一定电量的电池,在某一温度下,在保存一段时间后,会损失一部分容量,这就是自放电。简单理解,自放电就是电池在没有使用的情况下容量损失,如负极的电量自己回到正极或是电池的电量通过副反应反应掉了。

自放电的重要性

目前锂电池在类似于笔记本,数码相机,数码摄像机等各种数码设备中的使用越来越广泛,另外,在汽车,移动基站,储能电站等当中也有广阔的前景。在这种情况下,电池的使用不再像手机中那样单独出现,而更多是以串联或并联的电池组的形式出现。

电池组的容量和寿命不仅与每一个单个电池有关,更与每个电池之间的一致性有关。不好的一致性将会极大拖累电池组的表现。

自放电的一致性是影响因素的一个重要部分,自放电不一致的电池在一段时间储存之后SOC会发生较大的差异,会极大地影响它的容量和安全性。对其进行研究,有助于提高我们的电池组的整体水平,获得更高的寿命,降低产品的不良率。

自放电机理

锂钴石墨电池电极反应如下:

电池开路时,不发生以上反应,但电量依然会降低,这主要是由于电池自放电所造成。造成自放电的原因主要有:

a.电解液局部电子传导或其它内部短路引起的内部电子泄露。

b.由于电池密封圈或垫圈的绝缘性不佳或外部铅壳之间的电阻不够大(外部导体,湿度)而引起的外部电子泄露。

c.电极/电解液的反应,如阳极的腐蚀或阴极由于电解液、杂质而被还原。

d.电极活性材料局部分解。

e.由于分解产物(不溶物及被吸附的气体)而使电极钝化。

f.电极机械磨损或与集流体间电阻变大。

自放电的影响

1、自放电导致储存过程容量下降

几个典型的自放电过大造成的问题:

1、汽车停车时间过久,启动不了;

2、电池入库前电压等一切正常,待出货时发现低电压甚至零电压;

3、夏天车载GPS放在车上,过段时间使用感觉电量或使用时间明显不足,甚至伴随电池发鼓。

2、金属杂质类型自放电导致隔膜孔径堵塞,甚至刺穿隔膜造成局部短路,危及电池安全

3、自放电导致电池间SOC差异加大,电池组容量下降

由于电池的自放电不一致,导致电池组内电池在储存后SOC产生差异,电池性能下降。客户在拿到储存过一段时间的电池组之后经常能够发现性能下降的问题,当SOC差异达到20%左右的时候,组合电池的容量就只剩余60%~70%。

4、SOC差异较大容易导致电池的过充过放

一、化学&物理自放电的区分

1、高温自放电与常温自放电对比

物理微短路与时间关系明显,长时间的储存对于物理自放电的挑选更有效;而高温下化学自放电则更显著,应用高温储存来挑选。

按照高温5D,常温14D的方式储存:如果电池自放电以物理自放电为主,则常温自放电/高温自放电≈2.8;如果电池自放电以化学自放电为主,则常温自放电/高温自放电<2.8。

2、循环前后的自放电对比

循环会造成电池内部微短路熔融,从而使物理自放电降低,所以:如果电池自放电以物理自放电为主,则循环后的自放电降低明显;如果电池自放电以化学自放电为主,则循环后的自放电无明显变化。

3、液氮下测试漏电流

在液氮下使用高压测试仪测量电池漏电流,如有以下情况,则说明微短路严重,物理自放电大:

1)某一电压下,漏电流偏大;

2)不同电压下,漏电流之比与电压之比相差大。

4、隔膜黑点分析

通过观察和测量隔膜黑点的数量、形貌、大小、元素成分等,来判断电池物理自放电的大小及其可能的原因:1)一般情况下,物理自放电越大,黑点的数量越多,形貌越深(特别是会穿透到隔膜另一面);2)依据黑点的金属元素成分判断电池中可能含有的金属杂质。

5、不同SOC的自放电对比

不同SOC状态下,物理自放电的贡献会有差异。通过实验验证,100%SOC下更容易分辨物理自放电异常的电池。

二、自放电测试

1、自放电检测方法

1)电压降法

用储存过程中电压降低的速率来表征自放电的大小。该方法操作简单,缺点是电压降并不能直观地反映容量的损失。电压降法最简单实用,是当前生产普遍采用的方法。

2)容量衰减法

即单位时间内容量降低的百分数来表示。

3)自放电电流法Isd

根据容量损失和时间的关系推算电池储存过程中的自放电电流Isd。

4)副反应消耗的Li+摩尔数计算法

基于电池储存过程Li+消耗速率受负极SEI膜电子电导的影响,推导算Li+消耗量随储存时间的关系。

2、自放电测量系统关键点

1)选取合适的SOC

dOCV/dT受SOC影响,温度对OCV的影响在平台处被显著放大,带来很大的SOC预测误差。需选择对温度变化相对不敏感的SOC测试自放电,如:FC1865:25%SOC测自放电;LC1865:50%SOC测自放电。

因电池容量差异,故实际电池的SOC存在波动,公差约为4%左右,故考察5%的公差范围内OCV曲线斜率的变化。LC1865 53%和99.9%SOC处斜率很稳定,分别为3.8mV/%SOC和10mV/%SOC。FC1865~25%SOC处斜率比较稳定;当然满电态也是个简单实用的自放电测量点。

2)起始时间的选定

FC1865 25%SOC下(也可以是其他SOC值)看充电结束后每小时电压变化,20h以后电压降速率基本一致,可以认为极化已基本恢复。故选取24h作为自放电测试起始时间。

LC1865 50%SOC下14h以后电压变化速率在0.01mV/h上下小范围波动,可以认为极化已基本恢复,选取24h作为自放电起始点是可行的。

3)储存温度和时间

储存温度和时间对自放电的影响(LC1865H)

在研究区间内,自放电与时间和温度均呈显著的线性关系。可将自放电模型拟合为:自放电=0.23*t+0.39*(T-25)。(以上数值和关系式和电池体系有关,常量会相应变化,以下其他关系也是。)

常温下由于化学反应速率的降低,其物理自放电的异常点表现更明显。14D储存能够非常好的预测28D的结果。

3、自放电测量系统的改进

1)测电压温度

测电压环境温度对自放电的影响:FC1865:每增加1℃,电压下降0.05mV;LC1865:每增加1℃,电压下降0.17mV。

2)电压表选型

在电压表的选择上,由于自放电研究的是0.1mV层面的变化,传统的4位半电压表(精确到1mV,分辨率到0.1mV)已不适合,故选用六位半Agilent 34401A电压表,(精确达到0.1mV,分辨率达到0.01mV甚至更高)。另外该量仪的重复性也相当不错。

4、自放电标准的确定

1)理论推算

2) 1mV差异模拟

通过人为调整10%SOC差异模拟1mV(28天1mv,14天0.5mv的差异)自放电差异使用3年后的Balance结果。3组电池均未发生过充的安全问题,但是放电时的电压差已经非常大(1200mV),自放电大的电池被过放至2.5V,PACK容量损失10%。

自放电影响因素及控制要点

一、原材料金属杂质

1、金属杂质的影响机理

电池中:金属杂质发生化学和电化学腐蚀反应,溶解到电解液:M→Mn++ne-;此后,Mn+迁移到负极,并发生金属沉积:Mn++ne-→M;随着时间的增加,金属枝晶在不断生长,最后穿透隔膜,导致正负极的微短路,不断消耗电量,导致电压降低。

注: 以上只是最常见的形式,还可能有很多其他的影响机理。

2、不同种类金属屑影响程度

(1)正极浆料中添加不同种类金属屑

可定性的对影响程度排序:Cu>Zn>Fe>Fe2O3

注: 原则上,只要是金属杂质(如以上未列出的还有FeSFeP2O7…),都会对自放电产生较大影响,影响程度一般是金属单质最强。

金属屑电池的隔膜黑点形貌深(穿透到另一面)、数量多:

隔膜黑点的金属元素成分与添加的金属种类相吻合,说明隔膜黑点上的金属元素确实来源于金属杂质:

(2)负极浆料中添加不同种类金属屑

负极浆料中金属杂质的影响不及正极浆料中的金属杂质;其中,Cu、Zn 对自放电有显著影响;Fe、氧化铁未观察到显著影响。

3、金属杂质关键控制

(1)建立磁性金属杂质的测试方法

①用电子称称量粉末后,投入到聚四氟乙烯球磨罐中

②将已准备好的磁铁投入粉末,放超纯水

③球磨机以200±5rpm的速度搅拌30±10分钟

④搅拌完毕后,取出内部的磁铁(避免用手或其他器具直接接触

⑤磁铁表面吸的正极活性物质,用超纯水来洗净后,利用超声波来洗净 15±3秒钟。

⑥ ⑤项的手法反复进行多次——磷酸铁锂:20遍;其它物料:5-8遍

⑦洗净好的磁铁转移到100ml烧杯里。(防止异物的混入)

⑧在烧杯里,倒稀王水(盐酸:硝酸=3:1)6ml后,再加入磁铁沉浸程度的超纯水。然后加热20分钟左右

⑨将加热好的溶液转移到100ml容量瓶里,至少润洗3次,并把润洗液也转移到容量瓶中,最后用超纯水定容

⑩准备好的溶液,送AAS进行定量分析铁,铬,铜,锌,镍,钴的含量(磷酸铁锂再加测一个锂元素)。

测量原材料的磁性金属杂质含量:

磷酸铁锂:

杂质成分包含Fe、Cr、Ni、Al、P等,杂质金属应该为不锈钢。

KS6:

磁性金属杂质主要成分是Al,还有少量Mg。

(2)对金属杂质含量过高的原材料进行除铁

(3)原材料除铁对自放电的改善

二、制程粉尘金属屑

1、制程中粉尘金属屑的潜在来源

2、采取措施减少和消除粉尘金属屑

3、实例

使用自动卷绕机后,极片掉料显著改善:

使用自动卷绕机后,极芯短路率显著降低:

自动卷绕机对自放电的改善:

整个车间和产线的非金属化、5S行动:

三、电池水分

1、水分对自放电的影响机理

如上图,当电池中有H2O存在时,首先,其会与LiPF6反应,生产HF等腐蚀性气体;同时与溶剂等反应产生CO2等气体引起电池膨胀;HF会与电池中众多物质如SEI主要成分反应,破坏SEI膜;生成CO2和H2O等;CO2引起电池膨胀,重新生成的H2O又参与LiPF6、溶剂等反应;形成恶性链式反应!

SEI膜破坏的后果:

1)、溶剂进入石墨层中与LixC6反应,引起不可逆容量损失;

2)、破坏的SEI修复则要消耗Li+和溶剂等,进一步造成不可逆容量损失。

2、水分测量

固体水分测量方法的改进:

原有甲醇浸泡的测量方法的重复性和再现性都较差;并且测试周期长(浸泡24h),不可能用于在线控制。

改用卡氏加热炉+水分测定仪,准确性和精确性提高,MSA通过;测试时间约5分钟,适合用于在线监控。

3、水分控制

(1)优化极芯烘烤工艺,提高除水效果

(2)开发小卷烘烤工艺,提升除水效果

(3)建设自动装配线,减少极芯吸水

(4)控制电池注液过程中吸水

(5)优化制作流程,减少在制品积压

四、改善效果

1、电压趋于稳定

2、自放电不良率降

3、自放电趋势逐步稳定

4、自放电均值和中位数降低

免责声明:以上内容转载自电池中国,所发内容不代表本平台立场。全国能源信息平台联系电话:010-65367817,邮箱:hz@people-energy.com.cn,地址:北京市朝阳区金台西路2号人民日报社

锂电老司机经验谈:全面理解锂电池自放电现象

【能源人都在看,点击右上角加'关注'】

自放电的分类 :

从自放电对电池的影响,可以将自放电分为两种:损失容量能够可逆得到补偿的自放电;损失容量无法可逆补偿的自放电。按照这两种分类,我们可以大约轮廓性的给出一些自放电的原因。

自放电的原因:

1.造成可逆容量损失的原因:可逆容量损失的原因是发生了可逆放电反应,原理跟电池正常放电反应一致。不同点是正常放电电子路径为外电路、反应速度很快;自放电的电子路径是电解液、反应速度很慢。

2.造成不可逆容量损失的原因:当电池内部发生了不可逆反应时,所造成的容量损失即为不可逆容量损失的。所发生不可逆反应的类型主要包括:

A:正极与电解液发生的不可逆反应(相对主要发生于锰酸锂、镍酸锂这两种易发生结构缺陷的材料,例如锰酸锂正极与电解液中锂离子的反应:

LiyMn2O4+xLi++xe-→Liy+xMn2O4 等);

B:负极材料与电解液发生的不可逆反应(化成时形成的SEI膜就是为了保护负极不受电解液的腐蚀,负极与电解液可能发生的反应为:

LiyC6→Liy-xC6+xLi++x等);

C:电解液自身所带杂质引起的不可逆反应

(例如溶剂中CO2可能发生的反应:2CO2+2e-+2Li+→Li2CO3+CO;

溶剂中O2发生的反应:1/2O2+2e-+2Li+→Li2O )。

类似的反应不可逆的消耗了电解液中的锂离子,进而损失了电池容量。

D:制成时杂质造成的微短路所引起的不可逆反应。这一现象是造成个别电池自放电偏大的最主要原因。空气中的粉尘或者制成时极片、隔膜沾上的金属粉末都会造成内部微短路。生产时绝对的无尘是做不到的,当粉尘不足以达到刺穿隔膜进而使正负极短路接触时,其对电池的影响并不大;但是当粉尘严重到刺穿隔膜这个“度”时,对电池的影响就会非常明显。由于有是否刺穿隔膜这个“度”的存在,因此在测试大批电池自放电率时,经常会发现大部分电池的自放电率都集中在一个不大的范围内,而只有小部分电池的自放电明显偏高且分布离散,这些应该就是隔膜被刺穿的电池。

最后需要说明的是,锂离子电池内部发生的副反应是非常复杂的,文武虽然查了些资料,但由于水平有限精力有限,暂时只能分析道这个程度,大家凑合着看吧。

自放电的测试方法:

1.测量电池搁置一段时间后的容量损失:自放电研究的本初目的就是研究电池搁置后的容量损失。但是,以下原因造成测试容量损失在实施上困难重重:A.充电过程中的不可逆程度过大,即使充电后马上进行放电,放电容量/充电容量值都很难保证在100%±0.5%以内。如此大的误差,就要求测试之间的搁置时间必须非常长。而这很显然不符合日常生产的需求。B.测试容量时需要大量电力和人力物力,过程复杂且增加了成本。基于以上两个考虑,一般不会将“测量搁置后放电容量对比之前充电容量的损失”来作为电池的自放电标准。

2.测量一段时间内的K值:衡量自放电程度的一个非常重要的指标K值=△OCV/△t。K值常见单位为mV/d,当然这跟厂子自己的标准(或者厂子老大的个人喜好)、电池本身的性能、测量条件等有关。测量两次电压计算K值的方法更为简便且误差更小,因此K值是衡量电池自放电的常规性方法。以下文字可能会将K值与自放电混用,请大家注意。

自放电及K值的影响因素:

1.正负极材料、电解液种类、隔膜厚度种类:由于自放电很大程度上是发生于材料之间,因此材料的性能对自放电有很大的影响。但是材料的各个具体参数(比如正负极的粒径、电解液的电导率、隔膜的孔隙率等)对自放电的影响到底有多大、有影响的原因是什么?这一问题不是研究的重点。一是问题本身太过复杂,二是对量产、搞研究皆没有太大意义。不过好在文武的同事曾经做过实验,发现三元电池的自放电率要高于钴酸锂电池。但是再多的,就不知道了(子曰:知之为知之,不知为不知,是智也)。

2.存储的时间:存储时间变长,一方面是使压降的绝对值增大(废话),另一方面则变相的减少了“仪器绝对误差/压降值”,从而使结果更为准确。文武通过实验发现,使用精度为0.1mV的仪器测试自放电,当测试时间超过14天时,才能够将问题电芯(什么是问题电芯将在下面的文字中回答)与正常电芯区分出来(当然文武那批电池K值很小,0.13mV/d左右)。

3.存储的条件:温度和湿度的增加,会增大自放电程度。这点很好理解且论坛里下载的文献中也见过这类数据,不再赘述。

4.测试的初始电压:初始电压(或者说一次电压)不同,所得K值差别明显。文武曾将一批电池分为三组,初始电压分别为A组3.92V(我们的出厂电压)、B组3.85V、C组3.8V,然后测量K值(该批电池在实验前已经进行了筛选,自放电水平相近且存储、测试条件完全一致)。结果发现,A组的K值为X,B组K值约为1.8X,而C组虽然也会X,但是电压有一个先升后降得阶段。类似的结论在其它自放电测试中也有体现。不过,电池的自放电研究的终究是容量的损失,因此在不同初始电压条件下虽然K值相差很多,但是容量损失差多少并不知道。考虑到测试容量误差太大(做循环时候充/放能控制在100%±1%就不错了),因此并没有做过此类实验。感兴趣的朋友可以尝试一下。

测量自放电的作用:

1.预测问题电芯。同一批电芯,所用材料和制成控制基本相同,当出现个别电池自放电明显偏大时,原因很可能是内部由于杂质、毛刺刺穿隔膜而产生了严重的微短路。因为微短路对电池的影响是缓慢的和不可逆的。所以,短期内这类电池的性能不会与正常电池相差太多,但是长期搁置后随着内部不可逆反应的逐渐加深,电池的性能将远远低于其出厂性能以及其他正常电池性能。表现为:最大容量的不可逆损失明显偏高(例如三个月不可逆容量损失达到5%,而正常电池达到这一值要一年)、倍率容量保持率(0.5C/0.2C、1C/0.2C)降低、循环变差且循环后易出现析锂(此皆为文武实验结果所得)等。因此为了保证出厂电池质量,自放电大的电池必须剔除。

那么接下来的问题就是如何判定一个电池自放电大?如前所述,影响自放电的因素很多,故对所有电池给出一个经验性的K值作为统一标准是不现实的。文武只系统做过一次实验(110pcs电池测3个月自放电,然后挑出问题电池),我可以给出的参考是:将K值约为整批电池平均K值2倍的电池挑出作为不良品。如果电池内部有严重的微短路,那么与正常电池相比,这就相当于一个“质”的变化,其K值水平会明显有别于正常电池。没有问题的电池的K值的一致性要明显强于有问题电池的K值,因此挑出问题电池并不难。挑出问题电池后如何处理是需要考虑的,如果想知道这些K值过大电池是否能当A品出厂,文武也有一个建议(不过此类实验没有做过):鉴于自放电过大电池的不可逆容量损失很大,因此可以将电池搁置至少一个季度后重新分容,容量没有明显衰减,则认为其没有问题。

2.对电池进行配组。对于需要配组的电池,K值是重要的标准之一。在测量计算K值的过程中要注意,由于不同初始电压下自放电水平有明显差异,因此需要尽量保证电池的一次电压是在一个不大的范围内。我认为较好的一次电压范围标准就是电池厂自己的出厂电压。如果问题电池已经挑出,那么剩下的电池自放电率应该差别不是很大,此时用K值来作为配组标准之一的意义到底有多大,文武没有做过类似实验,且配组问题一直也是让人非常头痛的(看过一个文献说,1200次循环的电池配组之后,理论循环次数不到200次!),所以暂不做过多评述。

3.帮助制定电池出厂电压、出厂容量。有些客户有这类的要求:不管电池出厂电压、出厂容量多少,只是要求电池运到了客户手里,容量有60%。这时就需要评估电池在运输过程中会产生的自放电程度,从而确定电池的出厂电压或者容量。另外由于不同工艺、不同材料、不同储能阶段的电池自放电差值明显,因此对此问题需要进行单独的实验而不能简单套用其它实验的数据。

自放电的误区:

充电后的自放电:一些朋友表示充电后电池压降很快,说这是自放电过快。发生该情况的原因是电池在充电过程中的极化,造成充电电压高于电池实际电压。充电后电压下降的过程,就是电池电压从充电电压下降回归到自身本身电压的过程。而充电电压-电池实际电压的结果,叫做超电势,并不是什么所谓的“虚电”,且电化学术语中也没有虚电这一名称。因此充电后的电压回落主要是超电势的消失,自放电在其中所占比例非常非常小完全可以忽略。另外,从文武自己的数据来看,充电后电压基本稳定需要起码4h,且不论充电以恒流还是恒压作为结束,静止时间的差别也不是很大。

免责声明:以上内容转载自中国化学与物理电源行业协会,所发内容不代表本平台立场。全国能源信息平台联系电话:010-65367827,邮箱:hz@people-energy.com.cn,地址:北京市朝阳区金台西路2号人民日报社

相关问答

锂电池自放电 率是什么样子的_作业帮

[最佳回答]不同的活性物质,电池的荷电量的大小不同,自放电率都不一样对于自放电较小的钴酸锂,测量标准有一个叫“K值”的参数,K值=电压降×1000/测试间隔天数...

关于 锂电池自放电 率?

一般正规厂家的锂离子电池月自放电率在6%-8%,不过随着使用时间长了也会有变化的一般正规厂家的锂离子电池月自放电率在6%-8%,不过随着使用时间长了也会有变化的

锂电池自放电 解决方法?

蓄电池自放电,可用蓄电池额定容量10%的电放逐电至1.75V,然后适当减小电流,直到1.1~1.2V,促使杂质由负极板中转入电解液而倒出,再用蒸馏水冲刷电池各单格,直...

锂电池 循环寿命 测试 ,怎么做?要做多久?

锂电池循环寿命测试是有国家标准的;也就是按照一定的试验条件,对锂电池进行反复充放电实验,测试锂电池的电压、容量等参数的衰减趋势,当锂电池特性超出规定...

锂电池 不用时 自放电 多少为正常?

锂电池在不使用时,由于内部原因,如电池材料、电解液等,会发生自放电现象,即电池电量会逐渐减少。这个减少的速率被称为自放电率。不同类型的锂电池自放电率不...

如何判断 锂电池 是几c 放电 ?

要判断锂电池的放电倍率(C值),可以通过查看电池的规格参数或者标识来确定。一般来说,电池的C值会在电池上标明,例如1C、2C、3C等。如果没有标明,可以通过查...

怎么样检测 锂电池 最大 放电 电流?

要检测锂电池的最大放电电流,可以采取以下步骤:首先,选择一个合适的电流测量仪器,如电流表或示波器。然后,将电流测量仪器连接到锂电池的正负极上。接下...

对于 锂电池 ,请问如何测量 放电 电流和反向电流?

电池的容量,是用电流与时间的积来表示的。所以如果要测量电池的容量。需要对电池进行放电试验肌哗冠狙攉缴圭斜氦铆。由于电池电压会随放电下降,所以需要一恒...

怎么测量 锂电池 容量?

锂电池容量测试是以满电电压和设定的终止电压为参数的,因为锂电池的最低放电电压是2.75V,所以,小于3V的电压已经对锂电池测试没有意义;固定电流放电一般用多...

锂电池放电 的方法 - 懂得

锂电池放电特性和放电电流有关。放电的安全截止电压一般为2.5V左右。小电流放电同大电流放电比起来实际的输出总能量较高,这个道理很简单,假如电池...