锂电池容量衰减,这三个因素注意到了吗?
【能源人都在看,点击右上角加“关注”】
导读: 锂离子电池是继镉镍、氢镍电池之后发展最快的二次电池。它的高能特性让它的未来看起来一片光明。但是,锂离子电池并不完美,其最大的问题就是它的充放电循环的稳定性。本文总结并分析了锂离子电池容量衰减的可能原因,包括过充电,电解液分解及自放电。锂离子电池在两个电极间发生嵌入反应时 具有不同的嵌入能量,而为了得到电池的最佳性能,两个宿主电极的容量比应该保持一个平衡值。
在锂离子电池中, 容量平衡表示成为正极对负极的质量比 ,
即:γ=m+/m-=ΔxC-/ΔyC+
上式中C指电极的理论库仑容量,Δx、Δy分别指嵌入负极及正极的锂离子的化学计量数。从上式可以看出,两极所需要的质量比依赖于两极相应的库仑容量及其各自可逆锂离子的数目。
一般说来,较小的质量比 导致负极材料的不完全利用;较大的质量 比则可能由于负极被过充电而存在安全隐患。总之在最优化的质量比处,电池性能最佳。
对于理想的Li-ion电池系统 ,在其循环周期内容量平衡不发生改变,每次循环中的初始容量为一定值,然而实际情况 却复杂得多。任何能够产生或消耗锂离子或电子的副反应都可能导致电池容量平衡的改变,一旦电池的容量平衡状态发生改变,这种改变就是不可逆的,并且可以通过多次循环进行累积,对电池性能产生严重影响。在锂离子电池中,除了锂离子脱嵌 时发生的氧化还原反应外,还存在着大量的副反应 ,如电解液分解、活性物质溶解、金属锂沉积等。
原因一:过充电
1、石墨负极的过充反应:
电池在过充时,锂离子容易还原沉积在负极表面:
沉积的锂包覆在负极表面,阻塞了锂的嵌入。导致放电效率降低和容量损失,原因有:
①可循环锂量减少;
②沉积的金属锂与溶剂或支持电解质反应形成Li2CO3,LiF 或其他产物;
③金属锂通常形成于负极与隔膜之间,可能阻塞隔膜的孔隙增大电池内阻;
④由于锂的性质很活泼,易与电解液反应而消耗电解液.从而导致放电效率降低和容量的损失。
快速充电,电流密度过大,负极严重极化,锂的沉积会更加明显。这种情况容易发生在正极活性物相对于负极活性物过量的场合。但是,在高充电率的情况下,即使正负极活性物的比例正常,也可能发生金属锂的沉积 。
2、正极过充反应
当正极活性物相对于负极活性物比例过低时,容易发生正极过充电。
正极过充导致容量损失主要是由于电化学惰性物质(如Co3O4,Mn2O3等)的产生,破坏了电极间的容量平衡,其容量损失是不可逆的。
(1)LiyCoO2LiyCoO2→(1-y)/3[Co3O4+O2(g)]+yLiCoO2y
同时正极材料在密封的锂离子电池中分解产生的氧气由于不存在再化合反应(如生成H2O)与电解液分解产生的可燃性气体同时积累,后果将不堪设想。
(2)λ-MnO2
锂锰反应发生在锂锰氧化物完全脱锂的状态下:λ-MnO2→Mn2O3+O2(g)3、电解液在过充时氧化反应
当压高于4.5 时电解液就会氧化生成不溶物(如Li2Co3)和气体,这些不溶物会堵塞在电极的微孔里面阻碍锂离子的迁移而造成循环过程中容量损失。影响氧化速率因素:
正极材料表面积大小
集电体材料
所添加的导电剂(炭黑等)
炭黑的种类及表面积大小
在目前较常用电解液中,EC/DMC被认为是具有最高的耐氧化能力。溶液的电化学氧化过程一般表示为:溶液→氧化产物(气体、溶液及固体物质)+ne-
任何溶剂的氧化都会使电解质浓度升高,电解液稳定性下降,最终影响电池的容量 。 假设每次充电时都消耗一小部分电解液,那么在电池装配时就需要更多的电解液。对于恒定的容器来说,这就意味着装入更少量的活性物质,这样会造成初始容量的下降。此外,若产生固体产物,则会在电极表面形成钝化膜,这将引起电池极化增大而降低电池的输出电压。
原因二:电解液分解(还原)
I 在电极上分解
1、电解质在正极上分解:
电解液由溶剂和支持电解质组成,在正极分解后通常形成不溶性产物Li2Co3和LiF等,通过阻塞电极的孔隙而降低电池容量,电解液还原反应对电池的容量和循环寿命会产生不良影响,并且由于还原产生了气体会使电池内压升高,从而导致安全问题。
正极分解电压通常大于4.5V(相对于Li/Li+),所以,它们在正极上不易分解。相反,电解质在负极较易分解。
2、电解质在负极上分解:
电解液在石墨和其它嵌锂碳负极上稳定性不高,容易反应产生不可逆容量。初次充放电时电解液分解会在电极表面形成钝化膜 ,钝化膜能将电解液与碳负极隔开阻止电解液的进一步分解。从而维持碳负极的结构稳定性。理想条件下电解液的还原限制在钝化膜的形成阶段,当循环稳定后该过程不再发生。
钝化膜的形成
电解质盐的还原参与钝化膜的形成,有利于钝化膜的稳定化,但是
(1)还原产生的不溶物对溶剂还原生成物会产生不利影响;
(2)电解质盐还原时电解液的浓度减小,最终导致电池容量损失(LiPF6 还原生成LiF、LixPF5-x、PF3O 和PF3);
(3)钝化膜的形成要消耗锂离子,这会导致两极间容量失衡而造成整个电池比容量降低。
(4)如果钝化膜上有裂缝,则溶剂分子能透入,使钝化膜加厚,这样不但消耗更多的锂,而且有可能阻塞碳表面上的微孔,导致锂无法嵌入和脱出,造成不可逆容量损失。在电解液中加一些无机添加剂,如CO2,N2O,CO,SO2等,可加速钝化膜的形成,并能抑制溶剂的共嵌和分解,加入冠醚类有机添加剂也有同样的效果,其中以12冠4醚最佳。
成膜容量损失的因素:
(1)工艺中使用碳的类型;
(2)电解液成份;
(3)电极或电解液中添加剂。
Blyr 认为离子交换反应从活性物质粒子表面向其核心推进,形成的新相包埋了原来的活性物质,粒子表面形成了离子和电子导电性较低的钝化膜,因此贮存之后的尖晶石比贮存前具有更大的极化。
Zhang 通过对电极材料循环前后的交流阻抗谱的比较分析发现,随着循环次数的增加,表面钝化层的电阻增加,界面电容减小。反映出钝化层的厚度是随循环次数而增加的。锰的溶解及电解液的分解导致了钝化膜的形成,高温条件更有利于这些反应的进行。这将造成活性物质粒子间接触电阻及Li+迁移电阻的增大,从而使电池的极化增大,充放电不完全,容量减小。
II 电解液的还原机理
电解液中常常含有氧、水、二氧化碳等杂质,在电池充放电过程中发生氧化还原反应。
电解液的还原机理包括溶剂还原、电解质还原及杂质还原三方面:
1、溶剂的还原
PC和EC的还原包括一电子反应和二电子反应过程,二电子反应形成Li2CO3:
Fong 等认为,在第一次放电过程中,电极电势接近O.8V(vs.Li/Li+)时,PC/EC在石墨上发生电化学反应,生成CH=CHCH3(g)/CH2=CH2(g)和LiCO3(s),导致石墨电极上的不可逆容量损失。
Aurbach 等对各种电解液在金属锂电极和碳基电极上还原机理及其产物进行了广泛的研究,发现PC的一电子反应机理产生ROCO2Li和丙烯。ROCO2Li对痕量水很敏感,有微量水存在时主要产物为Li2CO3和丙稀,但在干燥情况下并无Li2CO3产生。
DEC的还原:
Ein-Eli Y 报道,由碳酸二乙酯 (DEC)和碳酸二甲酯(DMC)混合而成的电解液,在电池中会发生交换反应,生成碳酸甲乙酯(EMC),对容量损失产生一定的影响。
2、电解质的还原
电解质的还原反应通常被认为是参与了碳电极表面膜的形成,因此其种类及浓度都将影响碳电极的性能。在某些情况下,电解质的还原有助于碳表面的稳定,可形成所需的钝化层。
一般认为,支持电解质要比溶剂容易还原,还原产物夹杂于负极沉积膜中而影响电池的容量衰减。几种支持电解质可能发生的还原反应如下:
3、杂质还原
(1)电解液中水含量过高会生成LiOH(s)和Li2O沉积层,不利于锂离子嵌入,造成不可逆容量损失:
H2O+e→OH-+1/2H2
OH-+Li+→LiOH(s)
LiOH+Li++e-→Li2O(s)+1/2H2
生成LiOH(s)在电极表面沉积,形成电阻很大的表面膜,阻碍Li+嵌入石墨电极,从而导致不可逆容量损失。溶剂中微量水(100-300×10-6)对石墨电极性能没影响。
(2)溶剂中的CO2在负极上能还原生成CO和LiCO3(s):
2CO2+2e-+2Li+→Li2CO3+CO
CO会使电池内压升高,而Li2CO3(s)使电池内阻增大影响电池性能。
(3)溶剂中的氧的存在也会形成Li2O
1/2O2+2e-+2Li+→Li2O
因为金属锂与完全嵌锂的碳之间电位差较小,电解液在碳上的还原与在锂上的还原类似。
原因三:自放电
自放电 是指电池在未使用状态下,电容量自然损失的现象。锂离子电池自放电导致容量损失分两种情况 :
一是可逆容量损失;
二是不可逆容量的损失。
可逆容量损失是指损失的容量能在充电时恢复,而不可逆容量损失则相反,正负极在充电状态下可能与电解质发生微电池作用,发生锂离子嵌入与脱嵌,正负极嵌入和脱嵌的锂离子只与电解液的锂离子有关,正负极容量因此不平衡,充电时这部分容量损失不能恢复。如:
锂锰氧化物正极与溶剂会发生微电池作用产生自放电造成不可逆容量损失:
LiyMn2O4+xLi++xe-→Liy+xMn2O4
溶剂分子(如PC)在导电性物质碳黑或集流体表面上作为微电池负极氧化:
xPC→xPC-自由基+xe-
同样,负极活性物质可能会与电解液发生微电池作用产生自放电造成不可逆容量损失,电解质(如LiPF6)在导电性物质上还原:
PF5+xe-→PF5-x
充电状态下的碳化锂作为微电池的负极脱去锂离子而被氧化:
LiyC6→Liy-xC6+xLi+++xe-
自放电影响因素 :正极材料的制作工艺,电池的制作工艺,电解液的性质,温度,时间。
自放电速率主要受溶剂氧化速率控制,因此溶剂的稳定性影响着电池的贮存寿命。
溶剂的氧化主要发生在碳黑表面,降低碳黑表面积可以控制自放电速率,但对于LiMn2O4正极材料来说,降低活性物质表面积同样重要,同时集电体表面对溶剂氧化所起的作用也不容忽视。
通过电池隔膜而泄漏的电流也可以造成锂离子电池中的自放电,但该过程受到隔膜电阻的限制,以极低的速率发生,并与温度无关。考虑到电池的自放电速率强烈地依赖于温度,故这一过程并非自放电中的主要机理。
如果负极处于充足电的状态而正极发生自放电,电池内容量平衡被破坏,将导致永久性容量损失 。
长时间或经常自放电时,锂有可能沉积在碳上,增大两极间容量不平衡程度。
Pistoia 等比较了3种主要金属氧化物正极在各种不同电解液中的自放电速率,发现自放电速率随电解液不同而不同。并指出自放电的氧化产物堵塞电极材料上的微孔,使锂的嵌入和脱出困难并且使内阻增大和放电效率降低,从而导致不可逆容量损失。
本文来源:锂电前沿 本公众号发布本文之目的在于传播更多信息,并不意味着本公众号赞同或者否定本文部分以及全部观点或内容。本文版权归原作者所有,如涉及版权问题,请及时联系我们删除。
免责声明:以上内容转载自中国化学与物理电源行业协会,所发内容不代表本平台立场。
全国能源信息平台联系电话:010-65367827,邮箱:hz@people-energy.com.cn,地址:北京市朝阳区金台西路2号人民日报社
解析锂离子电池正负极材料的现在和未来——负极篇
上一篇给大家分享了锂离子电池正极材料的现状以及未来可能的方向,篇幅有限,今天就接着给大家带来负极材料的发展现状和未来趋势。【解析锂离子正负极材料的现在和未来——正极篇】
我们知道,无论从成本,寿命,能量密度,安全性来说负极对于锂离子电池来说也是至关重要的。
早期的锂离子电池负极是使用锂金属负极的但是为什么后来不用了呢?就是因为一直没有解决负极锂枝晶的问题,而且因此带过太多的安全事故之后电池届才不得不放弃这一理想的负极材料。现如今大规模商业化的负极材料只有两大类,那就是石墨类碳材料和LTO。其他负极材料包括Si类,Sn等合金负极材料。
数据来源:浙商证券
接下来给大家逐个分析各种负极材料。
图1 各种负极材料的电池性能对比
1.碳类负极材料
碳类负极材料是一个总称,一般可分为三大类:石墨,硬炭,软炭负极。
石墨又可分为人造石墨,天然石墨,中间相炭微球。
图2 炭负极材料电压和容量区间
天然石墨
优点:具有规整的片层结构,适合锂离子脱嵌,资源丰富,成本较低。
缺点:未经改性循环性能很差
改性方法:
(1)球型化以减小天然石墨的比表面积,减小材料在循环过程中的副反应。
(2)构造核-壳结构,即在天然石墨表面包覆一层非石墨化的炭材料。
(3)修饰或改变天然石墨表面状态(如官能团), 主要采用酸、碱、超声、球磨等处理方法或在空气、氧气、水蒸汽中进行轻微氧化处理的方法。
(4)引入非金属(如B, F, N, S)进行掺杂。
其中1,2所做改性基本上已经能够 满足高性能负极材料的需求
人造石墨
人造石墨是将易石墨化软炭经约2800℃以上石墨化处理制成,二次粒子以随机方式排列, 其间存在很多孔隙结构,有利于电解液的渗透和锂离子的扩散, 因此人造石墨能提高锂离子电池的快速充放电能力。
石墨化中间相炭微球
中间相炭微球为球形片层颗粒, 主要对煤焦油进行处理获得中间相小球体, 再经2800℃以上石墨化处理得到。中间相炭微球具有电极密度高及可大电流充放电的优势, 但其制造成本较高, 并且容量较低。
软炭
软炭材料, 主要采用易石墨化炭前驱体(如聚氯乙烯等)在500~700℃热处理得到, 软炭材料具有大量的乱层结构及异质原子如氢等, 容量一般在600~800 mAh/g, 但其电压滞后大,首次效率低, 并且衰减较快, 因此难以获得实际应用。
硬炭
硬炭材料采用难石墨化的炭前驱体(如酚醛树脂等)在900~1100℃下热处理得到, 其可逆容量在500~700 mAh/g 之间. 与低温软炭负极相比, 硬炭负极的平台较低, 首次效率和循环寿命都有提高, 目前已获得实际应用。
图3 炭负极理化性质对比
2.钛酸锂LTO
钛酸锂材料目前也已经商业化使用,其中国内代表性的电池企业就是最近比较火的董小姐收购的珠海银隆和微宏动力了。
LTO材料结构零应变被认为是比碳更安全、寿命更长的负极材料。但是同样的人无完人,物无完物,钛酸锂负极锂离子电池在充放电及储存过程中由于水分,杂质,界面反应等极易发生气胀,200ppm及500ppm水分导致的电池膨胀率分别为16%和33%,随着水分含量的升高,电池的产气量越来越多。在首次化成中,普通石墨电极中的水在电位 1. 2 V 附近分解,而 LTO 电极中吸收的水分在化成后可能依旧存在,主要是其LTO 的工作电位高于1.3V,残留的水与电解液中的 PF6-反应生成POF3,POF3化学催化了碳酸酯分解,进而产生了CO2,这是气胀的主要气体来源。
那么如何解决LTO的气胀问题呢?
(1)严格控制材料及电解液中水分
(2)优化电解液的配方,如提高锂盐浓度
(3)对LTO进行表面处理,如进行表面碳包覆
本人认为LTO负极材料注定是一个小众化和一个过渡性的产品,在未来的发展中不会像炭负极一样得到非常大规模的使用。
3.硅基材料SiC、SiO
由于电池技术的持续发展和各种应用如消费类电池,动力电池越来越高的能量密度需求,亟需高能量密度正负极材料。
图4 负极材料对于能量密度的提升
上一篇已经讲到高容量正极材料,Si在替代石墨用作锂离子电池负极材料是非常有潜力的,而且地球储量丰富(占地球表层的25.8%)。在已知的锂离子电池负极材料中, 硅具有最高的理论比容量(Li22Si5,4200 mAh/g)实际容量低于4000mAh/g,而石墨的理论比容量仅为372mAh/g。
别开心太早,其实这类材料仍然是“物无完物”,最大的问题就是负极的充放电膨胀无法得到有效的控制。充放电后晶格体积膨胀达到了同样惊人的360%,而石墨负极膨胀最大为10%左右。
极片膨胀后导致负极粉化掉料,材料之间的粘结性变差,负极表面SEI重复破坏和生长,消耗大量电解液,生成越来越多的副反应,最终导致循环性能直线下降。
那么解决办法是什么呢?将Si纳米化、惰性缓冲以及表面包覆技术相结合。
第一种,硅碳复合负极材料
采用核壳结构,通过以球形人造或者天然石墨为基底,在石墨表面钉扎一层Si纳米颗粒,再在其外表包覆一层无定形碳或石墨烯。
碳包覆机理在于:Si的体积膨胀由石墨和无定形包覆层共同承担,避免负极材料在嵌脱锂过程因巨大的体积变化和应力而粉化。碳包覆的作用是:
(1)约束和缓冲活性中心的体积膨胀
(2)阻止纳米活性粒子的团聚
(3)阻止电解液向中心渗透,保持稳定的界面和SEI
此外从其他材料的配合上,开发合适的粘结剂来保持电极结构的完整性,开发合适的电解液体系来建立稳定的固液界面。
第二种,SiO复合材料
SiO是纳米Si均匀地分散到无定形的SiO2中形成的纳米复合材料,SiO的容量来自于分散在SiO2里面的纳米Si颗粒。SiO 负极材料的比容量为2400 mAh/g,实际可逆容量在1500mAh/g以上,并且其循环和膨胀性能也优于SiC符合材料。
硅复合材料另一个通病就是首次效率太低,一般不到80%,远低于石墨类负极材料。所以现在商业化的应用中只能和石墨混合使用,添加量在10%以下。如此可将负极首次效率提升至接近90%,可逆容量在600mAh/g左右,据悉Tesla 目前所用负极材料为SiO混合石墨体系。
4.Sn基复合材料
Sn类似于Si材料,都具有非常高的储锂容量,但由于其自身成本较高,对其进行包覆处理的均一性难度较大。本人认为与Si材料相比不具有优势。
参考资料:
1.钛酸锂基锂离子电池的析气特性
2.炭材料在锂离子电池中的应用及前景
3.Possible Strategies to Enhance The Cyclability of Si-based Anodes
相关问答
如图所示是一种新型的锂空气 电池 ,该新型锂一空气 电池 无需充...[最佳回答]A.根据离子移动方向知,锂离子(Li+)穿过固体电解质移到正极的水性电解液中,故A错误;B.充电时,阳极上失电子发生氧化反应,电极反应式为4OH--4e-=2H2O+...
再用 惰性 电极电解,结果得到金属锂和一种无色无味的气】作...[最佳回答]相互关系应用专题:元素周期律与元素周期表专题分析:A、LiOH与氢氧化镁性质相似;B、LiCl与氯化镁性质相似;C、已潮解的LiCl加热蒸干并...专题:元...
锂电池 容量为什么会衰减_车坛锂电池容量为什么会衰减的原因如下:正极材料的结构变化:正极材料是锂离子电池的主要来源,当锂电池从正极中脱出时候,为了维持材料电中性状态,金属元...
主族金属为什么倾向失去电子,形成 惰性 结构?1.就是没有金字旁的元素了2.就是元素周期表最右边的那一列..0族..最外层8个电子.十分稳定.不易反应,一般状态为气体,所以叫惰性气体3.是锂、钠、钾、铷、铯...
请教大家 惰性锂 粉的比容量大概多少?要怎么估算?拜托拜托-盖...厂家那边没有测这个,然后我本来是按照理论容量来计算的,被老师骂了……说是不可能达到普通锂的理论容量,应该是有个标准的厂家不给比容量?是不是可...
假如电路中转移了0.4mole-,且电解池的电极均为 惰性 电极①...[最佳回答]①硝酸根离子为-1价,根据化合物中各元素化合价的代数和为0知,M元素在该化合物中化合价为+1价,电路中转移电子为0.4mol,则n(M)=n(e-)=0.4mol,M=mn=43...
再用 惰性 电极电解,结果得到金属锂和一种无色无味的气体....[最佳回答]A、LiOH与氢氧化镁性质相似,都是难溶于水,故A错误;B、LiCl与氯化镁性质相似,氯化镁受热易水解,生成氢氧化镁,再高温,可得氧化镁,故B正确;C、已潮解...
请问大家,金属锂粉或者 惰性锂 粉哪有卖的?-盖德问答-化工人...美国fmc有得卖,但是程序繁琐美国fmc有得卖,但是程序繁琐联系过fmc,但是没有回复。进口的锂粉,我只知道fmc了,如果楼主想试试多个牌子的,可以询问...
锂保存在什么里面?是煤油么?干燥环境下,锂金属不与氧气发生反应,只有在潮湿的环境下才与氧气发生反应,颜色由银白色变成黑色最后再变成白色。实验室中锂金属一般保存在干燥的惰性气体环境...
磷酸铁锂电池 是一种新型 锂电池 ,该电池的总反应式为Li+FePO4...[最佳回答]A、铁棒为阳极,本身放电,所以电极反应式为:Fe+H2PO4-+Li+-2e-═LiFePO4+2H+,故A正确;B、原电池中阳离子向正极移动,电解池中阳离子向阴极移动,所以...