技术 一文带你全面了解锂电池电解液
【能源人都在看,点击右上角加“关注”】
动力电池是电动汽车的关键部件,其性能直接决定了电动车的续航里程、环境适应性等关键参数。当前主流动力电池为锂离子电池,具有能量密度高、体积小、无记忆效应、循环寿命长等优点,但仍然存在续航里程不足的问题。电极材料决定了电池的能量密度,而电解液基本决定了电池的循环、高低温和安全性能。
锂电池电解液主要由锂盐、溶剂和添加剂三类物质组成。电解液基本构成变化不大,创新主要体现在对新型锂盐和新型添加剂的开发,以及锂离子电池中涉及的界面化学过程及机理深入理解等方面。
锂盐
锂盐的种类众多,但商业化锂离子电池的锂盐却很少。理想的锂盐需要具有如下性质:
(1)有较小的缔合度,易于溶解于有机溶剂,保证电解液高离子电导率;
(2)阴离子有抗氧化性及抗还原性,还原产物利于形成稳定低阻抗SEI膜;
(3)化学稳定性好,不与电极材料、电解液、隔膜等发生有害副反应;
(4)制备工艺简单,成本低,无毒无污染
不同种类的锂盐介绍
LiPF6
LiPF6是应用最广的锂盐。LiPF6的单一性质并不是最突出,但在碳酸酯混合溶剂电解液中具有相对最优的综合性能。LiPF6有以下突出优点:(1)在非水溶剂中具有合适的溶解度和较高的离子电导率;(2)能在Al箔集流体表面形成一层稳定的钝化膜;(3)协同碳酸酯溶剂在石墨电极表面生成一层稳定的SEI膜。但是LiPF6热稳定性较差,易发生分解反应,副反应产物会破坏电极表面SEI膜,溶解正极活性组分,导致循环容量衰减。
LiBF4
LiBF4是常用锂盐添加剂。与LiPF6相比,LiBF4的工作温度区间更宽,高温下稳定性更好且低温性能也较优。
LiBOB
LiBOB具有较高的电导率、较宽的电化学窗口和良好的热稳定性。其最大优点在于成膜性能,可直接参与SEI膜的形成。
LiDFOB
结构上LiDFOB是由LiBOB和LiBF4各自半分子构成,综合了LiBOB成膜性好和LiBF4低温性能好的优点。与LiBOB相比,LiDFOB在线性碳酸酯溶剂中具有更高溶解度,且电解液电导率也更高。其高温和低温性能都好于LiPF6且与电池正极有很好相容性,能在Al箔表面形成一层钝化膜并抑制电解液氧化。
LiTFSI
LiTFSI结构中的CF3SO2–基团具有强吸电子作用,加剧了负电荷的离域,降低了离子缔合配对,使该盐具有较高溶解度。LiTFSI有较高的电导率,热分解温度高不易水解。但电压高于3.7V时会严重腐蚀Al集流体。
LiFSI
LiFSI分子中的氟原子具有强吸电子性,能使N上的负电荷离域,离子缔合配对作用较弱,Li+容易解离,因而电导率较高。
LiPO2F2
LiPO2F2具有较好低温性能,同时也能改善电解液的高温性能。LiPO2F2作为添加剂能在负极表面形成富含LixPOyFz和LiF成分的SEI膜,有利于降低电池界面阻抗提升电池的循环性能。但是LiPO2F2也存在溶解度较低的缺点。
有机溶剂
液态电解质的主要成分是有机溶剂,溶解锂盐并为锂离子提供载体。理想的锂离子电池电解液的有机溶剂需要满足如下条件:
(1)介电常数高,对锂盐的溶解能力强;
(2)熔点低,沸点高,在较宽的温度范围内保持液态;
(3)黏度小,便于锂离子的传输;
(4)化学稳定性好,不破坏正负电极结构或溶解正负电极材料;
(5)闪电高,安全性好,成本低,无毒无污染。
常见的可用于锂电池电解液的有机溶剂主要分为碳酸酯类溶剂和有机醚类溶剂。为了获得性能较好的锂离子电池电解液,通常使用含有两种或两种以上有机溶剂的混合溶剂,使其能够取长补短,得到较好的综合性能。
有机醚类溶剂主要包括1, 2-二甲氧丙烷(DMP)、二甲氧甲烷(DMM)、乙二醇二甲醚(DME)等链状醚和四氢呋喃(THF)、2-甲基四氢呋喃(2-Me-THF)等环状醚。链状醚类溶剂碳链越长化学稳定性越好,但是黏度也越高,锂离子迁移速率也会越低。乙二醇二甲醚由于能与六氟磷酸锂生成较稳定的LiPF6-DME螯合物,对锂盐的溶解能力强,使电解液具有较高的电导率。但是DME化学稳定性较差,无法在负极材料表面形成稳定钝化膜。
碳酸酯类包括碳酸丙烯酯(PC)、碳酸乙烯酯(EC)等环状碳酸酯和碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)等链状碳酸酯。环状碳酸酯EC、PC具有很高的介电常数,使锂盐更易溶解,但同时黏度也很大,使锂离子迁移速率较低。链状碳酸酯DMC、DEC、EMC介电常数小,溶解锂盐能力弱,但黏度低具有很好的流动性,便于锂离子迁移。
添加剂
添加剂用量少,效果显著,是一种经济实用的改善锂离子电池相关性能的方法。通过在锂离子电池的电解液中添加较少剂量的添加剂,就能够针对性地提高电池的某些性能,例如可逆容量、电极/电解液相容性、循环性能、倍率性能和安全性能等,在锂离子电池中起着非常关键的作用。理想的锂离子电池电解液添加剂应该具备以下几个特点:
(1)在有机溶剂中溶解度较高;
(2)少量添加就能使一种或几种性能得到较大改善;
(3)不与电池其他组成成分发生有害副反应,影响电池性能;
(4)成本低廉,无毒或低毒性。
根据添加剂的功能不同,可分为导电添加剂、过充保护添加剂、阻燃添加剂、SEI成膜添加剂、正极材料保护剂、LiPF6稳定剂及其他功能添加剂。
导电添加剂通过与电解质离子进行配位反应,促进锂盐溶解,提高电解液电导率,从而改善锂离子电池倍率性能。由于导电添加剂是通过配位反应作用,又叫配体添加剂,根据作用离子不同分为阴离子配体、阳离子配体及中性配体。
过充保护添加剂是提供过充保护或增强过充忍耐力的添加剂。过充保护添加剂按照功能分为氧化还原对添加剂和聚合单体添加剂两种。目前氧化还原对添加剂主要是苯甲醚系列,其氧化还原电位较高,且溶解度很好。聚合单体添加剂在高电压下会发生聚合反应,释放气体,同时聚合物会覆盖于正极材料表面中断充电。聚合单体添加剂主要包括二甲苯、苯基环己烷等芳香族化合物。
阻燃添加剂的作用是提高电解液的着火点或终止燃烧的自由基链式反应阻止燃烧。添加阻燃剂是降低电解液易燃性,拓宽锂电池使用温度范围,提高其性能的重要途径之一。阻燃添加剂的作用机理主要有两种:一是通过在气相和凝聚相之间产生隔绝层,阻止凝聚相和气相的燃烧;二是捕捉燃烧反应过程中的自由基,终止燃烧的自由基链式反应,阻止气相间的燃烧反应。
成膜添加剂的作用是促进在电极材料表面形成稳定有效SEI膜。SEI膜的性能极大的影响了锂离子电池的首次不可逆容量损失,倍率性能,循环寿命等电化学性质。理想SEI膜对电子绝缘的同时允许锂离子自由进出电极,能阻止电极材料与电解液进一步反应且结构稳定,不溶于有机溶剂。
成膜添加剂根据作用机理不同分为电化学还原型、化学反应型和SEI膜修饰型。电化学还原型添加剂的还原电势比电解液中的有机溶剂高,可在电极表面优先发生电化学还原形成性能优良的SEI膜。这类添加剂包括碳酸亚乙烯酯(VC)、丙烯酸腈、SO2、CS2和多硫化物(Sx2-)等。化学反应型添加剂能与充放电过程中有机溶剂还原产物的中间体进行自由基反应,或与最终产物发生化学反应,结合生成稳定性更好的SEI膜。
未来电解液主要发展方向是开发匹配高电压正极的电解液,兼顾高容量硅碳负极,避免硅负极在循环过程中体积膨胀带来的固体电解质膜(SEI膜)反复破裂、再生导致的电解液过量消耗等问题。添加剂是电解液的价值核心,其对电解液的浸润性、阻燃性能、成膜性能等均有显著的影响,也是高性能电解液开发的关键。
参考资料:
周应华. LiNi0.5Mn1.5O4的高电压锂离子电池电解液研究进展
罗瑞. 耐高电压锂离子电池电解液的开发研究
卢秋建. 锂离子电池新型电解液组分选择及其与石墨负极相容性
余灵超. 锂离子电池电解液的分子设计、合成和电化学性质研究
义夫正树. 锂离子电池: 科学与技术
中国汽车工程学会. 节能与新能源汽车技术路线图
Besenhard, M. Winter. Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes
S. S. Zhang. A review on electrolyte additives for lithium-ion batteries
R. Dahn. The reactivity of charged electrode materials with electrolytes containing the flame retardant, triphenyl phosphate
本文来源:锂电前沿 本公众号发布本文之目的在于传播更多信息,并不意味着本公众号赞同或者否定本文部分以及全部观点或内容。本文版权归原作者所有,如涉及版权问题,请及时联系我们删除。
专业报告:
●《2018年动力锂离子电池行业研究年度报告》(20000元)
●《2018年磷酸铁锂产业链价值研究报告》(20000元)
●《2018中国三元材料市场年度报告》(20000元)
●《2018年锂电负极材料产业链剖析》(20000元)
●《2018年锂电负极材料市场年度报告》(6800元)
●《鑫椤前瞻-全球锂电池产业内参》(10000元)
●《正负极材料月度报告》(20000元)
以上报告由鑫椤资讯制作
咨询电话:18918035256
免责声明:以上内容转载自中国化学与物理电源行业协会,所发内容不代表本平台立场。全国能源信息平台联系电话 010-65367827,邮箱 hz@people-energy.com.cn
锂离子电池注液量真的是越多越好吗?
【能源人都在看,点击右上角加“关注”】
来源丨新能源Leader
导读
德国慕尼黑工业大学的FlorianJ. Günter对注液量对于锂离子电池浸润速度、能量密度和寿命性能的影响进行了详细的研究。
锂离子电池主要由正极、负极和电解液等部分构成,其中电解液虽然不提供容量,但是却承担着在正负极之间传导Li+的重要作用,因此锂离子电池的循环寿命和倍率性能等特性都与电解液之间有着密切的关系。由于电解液在锂离子电池工作的过程中会持续的在正负极发生氧化和还原反应,因此注液量过少对于锂离子电池的循环寿命不利,同时如果电解液数量过少,也会导致部分活性物质无法浸润,因此不利于电池容量的发挥,但是注液量过多也会造成锂离子电池能量密度下降,成本升高等问题,因此如何确定合适的注液量,对于锂离子电池在性能和成本之间的平衡就显得尤为重要。
近日,德国慕尼黑工业大学的FlorianJ. Günter (第一作者,通讯作者)就对注液量对于锂离子电池浸润速度、能量密度和寿命性能的影响进行了详细的研究 。实验中作者采用了软包电池作为研究对象,其中包含13片负极和12片正极,其中正极采用了NCM111材料,负极采用了石墨,正负极的基本参数如下表所示。采用的电解液为1mol浓度的LiPF6溶液(EC:EMC=3:7,2%的VC)。
为了保证电解液能够充分浸润电极,注液过程是在80mBar的高真空环境下进行的,电解液的用量可以通过下式进行计算,其中vf为体积比系数,范围为0.6-1.8,电池内部的微孔体积约为8.85ml,下表为采用不同体积比系数vf时电池的注液量与电池容量等基本信息。
随着电解液浸润程度的增加,电池内能够参与反应的两相界面不断增加,因此如果我们采用交流阻抗手段对电池阻抗进行测量,就能够发现电池的高频阻抗在持续降低,这也为我们实时监测电池浸润提供了一种新的方式。从下图不同注液量后电池高频阻抗的变化能够看到注液量更多的情况下,电池在注液后高频阻抗也下降的更多,但是当电解液与微孔体积比系数增加到1以上时,电解液量增加对于降低高频阻抗就影响比较小。同时我们还能够注意到电解液量较少的电池在浸润过程中还有阻抗增加的情况,这主要是由于电解液量不足造成的。
下图为不同电解液量对于电池在不同倍率下的可逆容量和能量密度的影响,理论上电解液只要填充掉电极和隔膜中所有的孔隙就可以,但是实际由于电极和隔膜之间仍然存在一定的间隙,电池实际需求的电解液量要大于1,我们看到当电解液体积比系数从0.6提高到1.2,电池在0.1C的可逆容量也在增加,但是继续增加注液量后电池的容量没有显著的增加,但是随着电解液数量的增加,电池的能量密度在不断降低。
下图为不同注液量电池在1C循环过程中不同倍率容量衰降情况,从图中能够注意到注液量比较少的0.6和0.8在经过50次循环后,可逆容量就发生了显著的衰降,特别是注液量最少的0.6电池的衰降尤为严重,这主要是由于电解液数量不足引起的浸润不充分造成,但是当电解液数量过多,达到1.6-1.8时,我们也能够同样观察到电池的衰降显著增加,作者认为这可能是由于电解液中过量的VC添加剂造成的。
下图为不同注液量的电池在不同寿命阶段的放电曲线,能够帮助我们更好的了解锂损失和电解液不足的影响,在循环第一周时,我们能够看到此时基本上没有Li损失,因此电解液量对电池性能的影响占主导地位,因此电池注液量越多,则电池的电压平台越高,电池容量越大。在经过100次循环后,注液量为0.6的电池已经失去了放电能力,注液量较多的电池(1.6和1.8)虽然在放电的前期仍然维持了较高的电压,但是放电后期电压快速衰降,因此电池的容量也较低,与注液量为0.8的电池的容量接近,注液量较多的电池损失的可逆容量可能来自于活性Li的损失,而注液量中等的电池(1.2和1.4)则仍然维持了较高的容量。但是在经过500次循环,虽然注液量为1.4的电池容量仍然最高,但是在放电的初期相比于电解液量较多的电池仍然出现了较多的电压衰降。
下图为不同注液量的电池恒压充电容量在电池容量中的占比,电池恒压充电容量占比主要反应电池充电过程中的极化情况,电池极化越大,则更早的进入到恒压充电阶段,因此恒压充电容量占比也就更大,因此我们从下图能够看到对于所有的电池充电倍率越大,则电池极化越大,恒压充电容量占比也就越高。从下图中我们能够看到电池的注液量越多则电池恒压充电容量占比越低,极化越小。
下图为不同注液量的电池在浸润后、化成后、排气后和循环后的高频阻抗变化,从下图能够看到整体上随着电池注液量增加,电池的高频阻抗是在不断降低的,为了保证电池的性能和循环寿命,电池的注液量应该在1.4左右。
从Florian J. Günter的工作我们可以看到对于锂离子电池并不是电解液越多越好,电解液过多时其中过量的成膜添加剂会不断消耗电池中的活性Li成分,从而引起锂离子电池容量衰降加速,而电解液数量过少则会导致活性物质浸润不充分,从而导致部分活性物质无法参与反应,从而严重影响循环寿命,因此合适的电解液量不仅有利于提升能量密度和降低成本,对于提升锂离子电池的循环寿命同样有重要的作用。
免责声明:以上内容转载自电池中国,所发内容不代表本平台立场。
全国能源信息平台联系电话:010-65367827,邮箱:hz@people-energy.com.cn,地址:北京市朝阳区金台西路2号人民日报社
相关问答
【 电解液 的 密度 是多少】作业帮[回答]环境温度20度时比重1.28电解液有好多类型,密度也不一样,一般硫酸1.84;与它的成分有关。
锂电池 的电解质是什么 – 960化工网问答锂电池的电解质是什么网友1最佳答案回答者:网友电池是一种能量转化与储存的装置。它通过反应将化学能或物理能转化为电能。电池即一种化学电源,它由两种...
【 蓄电池 在放电过程中, 电解液 的 密度 是如何变化的】作业帮[最佳回答]蓄电池在放电过程中,电解液的密度是逐渐降低的.
电解液 的 密度 是多少?电解液的密度是1.2~1.30g,电解液的密度是在蓄电池的化学反应中,起到离子间的导电作用。电解液是化学电池,电解电容所使用的介质,使用电解液做阴极有不少好处...
锂电池电解液 主要成分有哪些?电解液是什么东西[最佳回答]锂电池电解液的主要成分是溶剂、溶质和添加剂等原料,是在一定条件下按比例配制而成。三种原材料的质量比分别为80%-85%、10%-12%、3%-5%,成本比分别...
蓄 电池电解液 相对 密度 一般为多少?蓄电池电解液的相对密度一般是1.24~~~1.28g/cm3,应根据不同的使用条件选择不同的相对密度。如寒冷地区应使用相对密度较高的电解液;同一地区使用的蓄电池,冬...
电解液 的比重1,28是什么意思?_作业帮[最佳回答]比重,就是电解液密度.普通铅酸电瓶,比重在1.2--1.4之间
凝聚态 电池 需要锂吗?需要,凝聚态电池采用锂、钠制成的玻璃化合物为传导物质,取代以往锂电池的电解液,大大提升锂电池的能量密度。传统锂离子电池中,需要使用隔膜和电解液,它们...
电解液密度 越大, 蓄电池 的放电程度就越低,_作业帮[最佳回答]电解液密度作为衡量蓄电池放电程度的一个重要标志,是以原始电解液密度已经确定为前提的,补加不同密度的电解液,只意味着提高原电解液的密度,即使测...
锂电池电解液 是液体吗?是的锂电池电解液是电池中离子传输的载体。一般由锂盐和有机溶剂组成。电解液在锂电池正、负极之间起到传导离子的作用,是锂离子电池获得高电压、高比能等优...